Specgram zooms when sampling rate resampled to lower
    4 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Altemur Çelikayar
 el 24 de Mzo. de 2021
  
    
    
    
    
    Comentada: Mathieu NOE
      
 el 25 de Mzo. de 2021
            Hello,
I ve an audio wav file(original.wav) with 48000Hz sampling rate. I created spectrogram graph by using this command line:
[y,fs]=audioread('original.wav')
specgram(y)

after than i resampled my file and i did same method:
[a,b]=resample_number('i_wovel.wav',5500)
specgram(y)
%%
%my resample function:
function [y_new,Fs_new]=resample_number(audio_file,Fs_value)
% Code to read audio files
[y,Fs] = audioread(audio_file);
% code to resample audio
Fs_new = Fs_value;
% Take ratio from our old sample
[Numer, Denom] = rat(Fs_new/Fs);
y_new = resample(y, Numer, Denom);
end
After execution, this graph shown:

Why its look like zoomed. Shouldnt it be between same axis. How can i window this to same axis like original one?
3 comentarios
  Mathieu NOE
      
 el 25 de Mzo. de 2021
				see code example in the answer section 
I use decimate to resample the data to a new Fs then the time vector is updated based on new Fs and amount of samples
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 1;
if decim>1
    signal = decimate(signal,decim);
    Fs = Fs/decim;
end
samples = length(signal);
time = (0:samples-1)*1/Fs;
Respuesta aceptada
  Mathieu NOE
      
 el 25 de Mzo. de 2021
        Complete code for audio signal analysis 
clc
clear all
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% data
[data,Fs] = audioread('test_voice.wav');
channel = 1;
signal = data(:,channel);
samples = length(signal);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 256;    % 
OVERLAP = 0.75;
% spectrogram dB scale
spectrogram_dB_scale = 80;  % dB range scale (means , the lowest displayed level is XX dB below the max level)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% options 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% if you are dealing with acoustics, you may wish to have A weighted
% spectrums 
% option_w = 0 : linear spectrum (no weighting dB (L) )
% option_w = 1 : A weighted spectrum (dB (A) )
option_w = 0;
%% decimate (if needed)
% NB : decim = 1 will do nothing (output = input)
decim = 1;
if decim>1
    signal = decimate(signal,decim);
    Fs = Fs/decim;
end
samples = length(signal);
time = (0:samples-1)*1/Fs;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 1 : time domain plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
figure(1),plot(time,signal,'b');grid
title(['Time plot  / Fs = ' num2str(Fs) ' Hz ']);
xlabel('Time (s)');ylabel('Amplitude');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 2 : averaged FFT spectrum
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq, sensor_spectrum] = myfft_peak(signal,Fs,NFFT,OVERLAP);
% convert to dB scale (ref = 1)
sensor_spectrum_dB = 20*log10(sensor_spectrum);
% apply A weigthing if needed
if option_w == 1
    pondA_dB = pondA_function(freq);
    sensor_spectrum_dB = sensor_spectrum_dB+pondA_dB;
    my_ylabel = ('Amplitude (dB (A))');
else
    my_ylabel = ('Amplitude (dB (L))');
end
figure(2),plot(freq,sensor_spectrum_dB,'b');grid
title(['Averaged FFT Spectrum  / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(freq(2)-freq(1)) ' Hz ']);
xlabel('Frequency (Hz)');ylabel(my_ylabel);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display 3 : time / frequency analysis : spectrogram demo
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sg,fsg,tsg] = specgram(signal,NFFT,Fs,hanning(NFFT),floor(NFFT*OVERLAP));  
% FFT normalisation and conversion amplitude from linear to dB (peak)
sg_dBpeak = 20*log10(abs(sg))+20*log10(2/length(fsg));     % NB : X=fft(x.*hanning(N))*4/N; % hanning only
% apply A weigthing if needed
if option_w == 1
    pondA_dB = pondA_function(fsg);
    sg_dBpeak = sg_dBpeak+(pondA_dB*ones(1,size(sg_dBpeak,2)));
    my_title = ('Spectrogram (dB (A))');
else
    my_title = ('Spectrogram (dB (L))');
end
% saturation of the dB range : 
% saturation_dB = 60;  % dB range scale (means , the lowest displayed level is XX dB below the max level)
min_disp_dB = round(max(max(sg_dBpeak))) - spectrogram_dB_scale;
sg_dBpeak(sg_dBpeak<min_disp_dB) = min_disp_dB;
% plots spectrogram
figure(3);
imagesc(tsg,fsg,sg_dBpeak);colormap('jet');
axis('xy');colorbar('vert');grid
title([my_title ' / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(fsg(2)-fsg(1)) ' Hz ']);
xlabel('Time (s)');ylabel('Frequency (Hz)');
function pondA_dB = pondA_function(f)
	% dB (A) weighting curve
	n = ((12200^2*f.^4)./((f.^2+20.6^2).*(f.^2+12200^2).*sqrt(f.^2+107.7^2).*sqrt(f.^2+737.9^2)));
	r = ((12200^2*1000.^4)./((1000.^2+20.6^2).*(1000.^2+12200^2).*sqrt(1000.^2+107.7^2).*sqrt(1000.^2+737.9^2))) * ones(size(f));
	pondA = n./r;
	pondA_dB = 20*log10(pondA(:));
end
function  [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal  (example sinus amplitude 1   = 0 dB after fft).
% Linear averaging
%   signal - input signal, 
%   Fs - Sampling frequency (Hz).
%   nfft - FFT window size
%   Overlap - buffer percentage of overlap % (between 0 and 0.95)
[samples,channels] = size(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
    s_tmp = zeros(nfft,channels);
    s_tmp((1:samples)) = signal;
    signal = s_tmp;
    samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
%    compute fft with overlap 
 offset = fix((1-Overlap)*nfft);
 spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
%     % for info is equivalent to : 
%     noverlap = Overlap*nfft;
%     spectnum = fix((samples-noverlap)/(nfft-noverlap));	% Number of windows
    % main loop
    fft_spectrum = 0;
    for i=1:spectnum
        start = (i-1)*offset;
        sw = signal((1+start):(start+nfft),:).*(window*ones(1,channels));
        fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft);     % X=fft(x.*hanning(N))*4/N; % hanning only 
    end
    fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum  % Select first half 
    if rem(nfft,2)    % nfft odd
        select = (1:(nfft+1)/2)';
    else
        select = (1:nfft/2+1)';
    end
fft_spectrum = fft_spectrum(select,:);
freq_vector = (select - 1)*Fs/nfft;
end
2 comentarios
Más respuestas (0)
Ver también
Categorías
				Más información sobre Audio I/O and Waveform Generation en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

