Linear Label on Logarithmic Plot
    9 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Douglas Anderson
      
 el 13 de Mayo de 2021
  
    
    
    
    
    Editada: Walter Roberson
      
      
 el 14 de Mayo de 2021
            Hello!
I have an "example" regression loglog graph to show someone. The Y axis is not very large, but is less than 1, so it shows up as log rather than linear.  
Is there a way to do this cleanly?  Here's the code:
% reggie
rng('shuffle');
Intercept   = 1000;
Slope       = -1.6;
dist        = 150:50:300;
vib         = Intercept*(dist.^Slope);
minx        = 50;
maxx        = 400;
figure
loglog(dist,vib,'o','MarkerFaceColor','r')
xlim([minx maxx])
ylim([0.05 1])
hold on
grid on
grid minor
loglog([minx maxx],[Intercept*(minx^Slope) Intercept*(maxx^Slope)],'--');
xlabel('Distance (ft)');
ylabel('Vibration (in/s)');
title('Regression Example');
for n = 1:length(dist)
  scatterling   = 0.3 * vib(n);
  median_value  = vib(n);
  new_values    = scatterling.*randn(6,1)+median_value;
  loglog(dist(n),new_values,'diamond','LineStyle','none');
end
newdist = 100;
reduction_factor = 0.65;
newvib = (reduction_factor * Intercept) *(newdist.^Slope);
loglog(newdist,newvib,'o','MarkerFaceColor','b');
scatterling = 0.4 * newvib;
median_value = newvib;
new_values    = scatterling.*randn(6,1)+median_value;
  loglog(newdist,new_values,'diamond','LineStyle','none','MarkerFaceColor','g'); 
Thanks!
Doug
2 comentarios
  Walter Roberson
      
      
 el 13 de Mayo de 2021
				It is not clear what you are asking for??
You do loglog plots. If you do not want to reprogram that to linear, you could 
set(gca, 'YScale', 'linear')
Respuesta aceptada
  Walter Roberson
      
      
 el 14 de Mayo de 2021
        ax = gca;
ax.YAxis.Exponent = 0;
2 comentarios
  Walter Roberson
      
      
 el 14 de Mayo de 2021
				
      Editada: Walter Roberson
      
      
 el 14 de Mayo de 2021
  
			% reggie
rng('shuffle');
Intercept   = 1000;
Slope       = -1.6;
dist        = 150:50:300;
vib         = Intercept*(dist.^Slope);
minx        = 50;
maxx        = 400;
figure
loglog(dist,vib,'o','MarkerFaceColor','r')
xlim([minx maxx])
ylim([0.05 1])
hold on
grid on
grid minor
loglog([minx maxx],[Intercept*(minx^Slope) Intercept*(maxx^Slope)],'--');
xlabel('Distance (ft)');
ylabel('Vibration (in/s)');
title('Regression Example');
for n = 1:length(dist)
  scatterling   = 0.3 * vib(n);
  median_value  = vib(n);
  new_values    = scatterling.*randn(6,1)+median_value;
  loglog(dist(n),new_values,'diamond','LineStyle','none');
end
newdist = 100;
reduction_factor = 0.65;
newvib = (reduction_factor * Intercept) *(newdist.^Slope);
loglog(newdist,newvib,'o','MarkerFaceColor','b');
scatterling = 0.4 * newvib;
median_value = newvib;
new_values    = scatterling.*randn(6,1)+median_value;
  loglog(newdist,new_values,'diamond','LineStyle','none','MarkerFaceColor','g'); 
  yticklabels(compose("%g", yticks))
Más respuestas (0)
Ver también
Categorías
				Más información sobre Line Plots en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



