Input from PCA to train in SVM
2 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
nurin noor
el 2 de Jun. de 2021
Comentada: nurin noor
el 3 de Jun. de 2021
Hi Everyone. I had done PCA to reduce the feature but I am really confused what input from the PCA should i used to train in SVM.
I used this function :
[coeff,score,latent,tsquared,explained] = pca(fextracted);
I read somewhere they said the score should be the input. However, I dont think score is the correct one to be used since it has the same array size as my original data.
0 comentarios
Respuesta aceptada
the cyclist
el 2 de Jun. de 2021
Editada: the cyclist
el 2 de Jun. de 2021
I have written a "tutorial" on how to use and interpret MATLAB's pca function here. Lots of users have asked questions (some of which are very similar to yours), and I have tried to answer them. I suggest you check that thread out, and see if it helps.
Más respuestas (0)
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!