Scatter plot with colorbar showing density of points
33 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hi everyone
I want to draw scatter plot along with a colorbar showing where the points are denser. I have attached the desired output cropped images.
Any help would be greatly appreciated.
The code is also (the mat files are also attached) :
% Loading mat files.
load('OrgValues.mat')
load('ATPK_AggregatedValues.mat')
% Visualization
figure;
P1 = plot(OrgValues, ATPK_AggregatedValues, 'o','MarkerFaceColor','b');
xlim([0,max(max(ATPK_AggregatedValues, OrgValues))])
ylim([0,max(max(ATPK_AggregatedValues, OrgValues))])
hold on
P2 = plot([0,max(max(ATPK_AggregatedValues, OrgValues))],[0,max(max(ATPK_AggregatedValues, OrgValues))],'-');
hold off
XlabelText = xlabel('Orginial');
YlabelText = ylabel('Aggregated');
2 comentarios
Respuestas (1)
SALAH ALRABEEI
el 8 de Jun. de 2021
You can for example measure the distance between all the coordinates, then take the inverse of minimum distance or average of al the distance between the value x(1),y(1) with all the others.
%
X = rand(1000,2);
D = pdist(X);
D = sort((squareform(D))); %
s = 1./D(2,:); % we take the miminum distance of each element except the the distance between itself at D(1,:);
s2 = 1.mean(D); % another way to use it. Depends on your data.
scatter(X(:,1),X(:,2),[],s)
2 comentarios
SALAH ALRABEEI
el 8 de Jun. de 2021
% write this after the load line
X =[OrgValues, ATPK_AggregatedValues];
D = pdist(X);
D = sort((squareform(D))); %
s = 1./D(2,:); % we take the miminum distance of each element except the the distance between itself at D(1,:);
s2 = 1/.mean(D); % another way to use it. Depends on your data.
Then replace
P1 = plot(OrgValues, ATPK_AggregatedValues, 'o','MarkerFaceColor','b');
by this
scatter(OrgValues, ATPK_AggregatedValues,[],s,'filled');
or
scatter(OrgValues, ATPK_AggregatedValues,[],s2,'filled');
Ver también
Categorías
Más información sobre Scatter Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!