improper integral: exp(ikx) undefined in Matlab?

6 visualizaciones (últimos 30 días)
Niklas Kurz
Niklas Kurz el 19 de Jun. de 2021
Editada: Niklas Kurz el 20 de Jun. de 2021
I wanna integrate:
With solution:
But Matlab gives NAN:
syms x k; assume(k,'integer'); int(exp(1i*k*x),x,-inf,inf)

Respuesta aceptada

Steven Lord
Steven Lord el 19 de Jun. de 2021
What is the value of your integral when k is equal to 0?
syms x k;
assume(k,'integer');
k = 0;
int(exp(1i*k*x),x,-inf,inf)
ans = 
This makes sense, as you're just integrating 1 over the whole real line.
What's the value of your integral when k is 1?
k = 1;
int(exp(1i*k*x),x,-inf,inf)
ans = 
NaN
Does this make sense? Let's look at the real and imaginary parts of the function you're integrating.
f = 8*pi;
fplot(real(exp(1i*k*x)), [-f, f], 'k--')
hold on
fplot(imag(exp(1i*k*x)), [-f, f], 'c-')
Those oscillations could be problematic. Does this integral exist? Let's look at a series of values of those integrals for gradually increasing limits.
for L = 0:0.5:10
value = int(exp(1i*k*x), -L*pi, L*pi);
fprintf("The value of the integral from %g*pi to %g*pi is %g.\n", -L, L, value);
end
The value of the integral from -0*pi to 0*pi is 0. The value of the integral from -0.5*pi to 0.5*pi is 2. The value of the integral from -1*pi to 1*pi is 0. The value of the integral from -1.5*pi to 1.5*pi is -2. The value of the integral from -2*pi to 2*pi is 0. The value of the integral from -2.5*pi to 2.5*pi is 2. The value of the integral from -3*pi to 3*pi is 0. The value of the integral from -3.5*pi to 3.5*pi is -2. The value of the integral from -4*pi to 4*pi is 0. The value of the integral from -4.5*pi to 4.5*pi is 2. The value of the integral from -5*pi to 5*pi is 0. The value of the integral from -5.5*pi to 5.5*pi is -2. The value of the integral from -6*pi to 6*pi is 0. The value of the integral from -6.5*pi to 6.5*pi is 2. The value of the integral from -7*pi to 7*pi is 0. The value of the integral from -7.5*pi to 7.5*pi is -2. The value of the integral from -8*pi to 8*pi is 0. The value of the integral from -8.5*pi to 8.5*pi is 2. The value of the integral from -9*pi to 9*pi is 0. The value of the integral from -9.5*pi to 9.5*pi is -2. The value of the integral from -10*pi to 10*pi is 0.
So should the value of this integral on the infinite interval be 0, -2, or something inbetween?
  1 comentario
Niklas Kurz
Niklas Kurz el 20 de Jun. de 2021
Editada: Niklas Kurz el 20 de Jun. de 2021
yea, that's the problem aobut the delta-distribution not being a function, so it is hard for matlab to see in infinit domain. Or the variable k is not restricted enough. At least.
syms x; fourier(x^0)
gives the adaped solution (evaluating exactly that integral)

Iniciar sesión para comentar.

Más respuestas (0)

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by