How to find the pole is oscillatory or not?
    17 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
 For a system to be oscillatory, it must have a conjugate complex pole pair. That is, two poles must have the same real part and the same magnitude of the imaginary part, but with different signs, e.g. pole1 =a+i*b, pole2=a-i*b.
 Please determine whether the systems G_1(s) and G_2(s) are oscillatory.
 For this, write a function with a loop and/or query that outputs a 1 if the system is oscillatory and a 0 if it is not. 
 oscillatory. The function should be stored in a separate file "is_vibrating.m".
% Solution:
% Content of the file "ist_schwingfaehig.m":
%
function b_out = ist_schwingfaehig(G)
    if 
    end
    or 
    function [b_out] = ist_schwingfaehig(G)
    if abs(pole_1)== (pole_2)
        b_out=1;
        display('b_out')       
    else 
        b_out=0;
        display('b_out')
    end
end
%
% Where G corresponds to a general transfer function and b_out is
% a boolean data type
0 comentarios
Respuestas (1)
  LO
      
 el 11 de Jul. de 2021
        shouldn't an oscillatory system correlate with itself, with a certain periodicity ? 
try this 
https://de.mathworks.com/help/econ/autocorr.html
0 comentarios
Comunidades de usuarios
Más respuestas en Power Electronics Control
Ver también
Categorías
				Más información sobre Deep Learning Toolbox en Help Center y File Exchange.
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!

