Test | Status | Code Input and Output |
---|---|---|
1 | Pass |
% The following properties are measured at room temperature and are tensile
% in a single direction. Some materials, such as metals are generally
% isotropic, whereas others, like composite are highly anisotropic
% (different properties in different directions). Also, property values can
% range depending on the material grade. Finally, thermal or environmental
% changes can alter these properties, sometimes drastically.
|
2 | Pass |
S_y = 250e6; %Pa
S_u = 400e6; %Pa
e_y = 0.00125;
e_u = 0.35;
nu = 0.26;
G = 79.3e9; %Pa
E = 200e9; %Pa
density = 7.85; %g/cm^3
sh_exp = 0.14; %strain-hardening exponent
sh_coeff = 463e6; %strain-hardening coefficient
T_corr = 12.26e7;
frac_corr = 0.9987;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
3 | Pass |
S_y = 830e6; %Pa
S_u = 900e6; %Pa
e_y = 0.00728;
e_u = 0.14;
nu = 0.342;
G = 44e9; %Pa
E = 114e9; %Pa
density = 4.51; %g/cm^3
sh_exp = 0.04; %strain-hardening exponent
sh_coeff = 974e6; %strain-hardening coefficient
T_corr = 11.82e7;
frac_corr = 0.9751;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
4 | Pass |
S_y = 1172e6; %Pa
S_u = 1407e6; %Pa
e_y = 0.00563;
e_u = 0.027;
nu = 0.29;
G = 11.6e9; %Pa
E = 208e9; %Pa
density = 8.19; %g/cm^3
sh_exp = 0.075; %strain-hardening exponent
sh_coeff = 1845e6; %strain-hardening coefficient
T_corr = 3.205e7;
frac_corr = 0.9067;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
5 | Pass |
S_y = 241e6; %Pa
S_u = 300e6; %Pa
e_y = 0.0035;
e_u = 0.15;
nu = 0.33;
G = 26e9; %Pa
E = 68.9e9; %Pa
density = 2.7; %g/cm^3
sh_exp = 0.042; %strain-hardening exponent
sh_coeff = 325e6; %strain-hardening coefficient
T_corr = 4.279e7;
frac_corr = 0.9902;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
6 | Pass |
S_y = 70e6; %Pa
S_u = 220e6; %Pa
e_y = 0.00054;
e_u = 0.48;
nu = 0.34;
G = 48e9; %Pa
E = 130e9; %Pa
density = 8.92; %g/cm^3
sh_exp = 0.44; %strain-hardening exponent
sh_coeff = 304e6; %strain-hardening coefficient
T_corr = 7.340e7;
frac_corr = 0.9997;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
7 | Pass |
S_y = 317e6; %Pa
S_u = 1130e6; %Pa
e_y = 0.000685;
e_u = 0.24;
nu = 0.3;
G = 178e9; %Pa
E = 463e9; %Pa
density = 21.02; %g/cm^3
sh_exp = 0.353; %strain-hardening exponent
sh_coeff = 1870e6; %strain-hardening coefficient
T_corr = 20.05e7;
frac_corr = 0.9995;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
8 | Pass |
S_y = 82e6; %Pa
S_u = 82e6; %Pa
e_y = 0.0265;
e_u = 0.45;
nu = 0.41;
G = 2.8e9; %Pa
E = 3.1e9; %Pa
density = 1.14; %g/cm^3
sh_exp = 0; %strain-hardening exponent
sh_coeff = 0; %strain-hardening coefficient
T_corr = 3.473e7;
frac_corr = 0.9697;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
9 | Pass |
S_y = 230e6; %Pa
S_u = 230e6; %Pa
e_y = 0.016;
e_u = 0.016;
nu = 0.35;
G = 13.0e9; %Pa
E = 14.5e9; %Pa
density = 1.51; %g/cm^3
sh_exp = 0; %strain-hardening exponent
sh_coeff = 0; %strain-hardening coefficient
T_corr = 0;
frac_corr = 0;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(isequal(T,T_corr))
assert(isequal(frac,frac_corr))
|
10 | Pass |
S_y = 1200e6; %Pa
S_u = 1200e6; %Pa
e_y = 0.001;
e_u = 0.001;
nu = 0.20;
G = 478e9; %Pa
E = 1200e9; %Pa
density = 3.51; %g/cm^3
sh_exp = 0; %strain-hardening exponent
sh_coeff = 0; %strain-hardening coefficient
T_corr = 0;
frac_corr = 0;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(isequal(T,T_corr))
assert(isequal(frac,frac_corr))
|
11 | Pass |
ind = randi(4);
switch ind
case 1
S_y = 250e6; %Pa
e_y = 0.00125;
e_u = 0.35;
sh_exp = 0.14; %strain-hardening exponent
sh_coeff = 463e6; %strain-hardening coefficient
T_corr = 12.26e7;
frac_corr = 0.9987;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
case 2
S_y = 830e6; %Pa
e_y = 0.00728;
e_u = 0.14;
sh_exp = 0.04; %strain-hardening exponent
sh_coeff = 974e6; %strain-hardening coefficient
T_corr = 11.82e7;
frac_corr = 0.9751;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
case 3
S_y = 230e6; %Pa
e_y = 0.016;
e_u = 0.016;
sh_exp = 0; %strain-hardening exponent
sh_coeff = 0; %strain-hardening coefficient
T_corr = 0;
frac_corr = 0;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(isequal(T,T_corr))
assert(isequal(frac,frac_corr))
case 4
S_y = 317e6; %Pa
e_y = 0.000685;
e_u = 0.24;
sh_exp = 0.353; %strain-hardening exponent
sh_coeff = 1870e6; %strain-hardening coefficient
T_corr = 20.05e7;
frac_corr = 0.9995;
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
end
|
12 | Pass |
ind = randi(4);
switch ind
case 1
S_y = 70e6; %Pa
e_y = 0.00054;
e_u = 0.48;
sh_exp = 0.44; %strain-hardening exponent
sh_coeff = 304e6; %strain-hardening coefficient
T_corr = 7.340e7;
frac_corr = 0.9997;
case 2
S_y = 1172e6; %Pa
e_y = 0.00563;
e_u = 0.027;
sh_exp = 0.075; %strain-hardening exponent
sh_coeff = 1845e6; %strain-hardening coefficient
T_corr = 3.205e7;
frac_corr = 0.9067;
case 3
S_y = 82e6; %Pa
e_y = 0.0265;
e_u = 0.45;
sh_exp = 0; %strain-hardening exponent
sh_coeff = 0; %strain-hardening coefficient
T_corr = 3.473e7;
frac_corr = 0.9697;
case 4
S_y = 241e6; %Pa
e_y = 0.0035;
e_u = 0.15;
sh_exp = 0.042; %strain-hardening exponent
sh_coeff = 325e6; %strain-hardening coefficient
T_corr = 4.279e7;
frac_corr = 0.9902;
end
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
13 | Pass |
ind = randi(4);
switch ind
case 1
S_y = 317e6; %Pa
e_y = 0.000685;
e_u = 0.24;
sh_exp = 0.353; %strain-hardening exponent
sh_coeff = 1870e6; %strain-hardening coefficient
T_corr = 20.05e7;
frac_corr = 0.9995;
case 2
S_y = 70e6; %Pa
e_y = 0.00054;
e_u = 0.48;
sh_exp = 0.44; %strain-hardening exponent
sh_coeff = 304e6; %strain-hardening coefficient
T_corr = 7.340e7;
frac_corr = 0.9997;
case 3
S_y = 241e6; %Pa
e_y = 0.0035;
e_u = 0.15;
sh_exp = 0.042; %strain-hardening exponent
sh_coeff = 325e6; %strain-hardening coefficient
T_corr = 4.279e7;
frac_corr = 0.9902;
case 4
S_y = 250e6; %Pa
e_y = 0.00125;
e_u = 0.35;
sh_exp = 0.14; %strain-hardening exponent
sh_coeff = 463e6; %strain-hardening coefficient
T_corr = 12.26e7;
frac_corr = 0.9987;
end
[T,frac] = stress_strain7(e_y,e_u,S_y,sh_exp,sh_coeff);
assert(abs(T-T_corr)/T_corr<1e-2)
assert(abs(frac-frac_corr)/frac_corr<1e-2)
|
19332 Solvers
Find state names that end with the letter A
708 Solvers
Back to basics 25 - Valid variable names
293 Solvers
Are all the three given point in the same line?
270 Solvers
147 Solvers
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!