Resultados de
Are you looking for ideas to provide students a more effective learning experience in an online or hybrid environment? A collection of videos on Online Teaching with MATLAB and Simulink demonstrates resources for providing hands-on experience with MATLAB and Simulink, plus examples of delivering instruction, engaging students using virtual labs and projects, and assessing outcomes in your preferred learning platform.
View ‘Online Teaching with MATLAB and Simulink’ video series
Several educators worldwide use MATLAB Grader to scale assessments and automatically grade MATLAB coding assignments. MATLAB Grader can be used in any learning environment, for both formative assessments with automated feedback and summative assessments, such as quizzes and exams.
To get you started easily, you can access MATLAB Grader problem collections that include domains like Calculus, Programming, Dynamics, and more. Adapt these examples to your curriculum or use them as is to generate quick exercises for your students and reinforce MATLAB skills. The examples illustrate some best practices for how to design assessments, test for common errors, and write rich feedback for students to help them iterate and improve on their solutions.
Request access to the problem collections through Customer Support or your assigned Customer Success Engineer or Account Representative. They ensure that only authorized instructors gain access to the problem collections.
If you are new to MATLAB Grader, watch the MATLAB Grader Overview video and try the interactive Teaching with MATLAB online course (Section 6 is about MATLAB Grader).
Prof. Ayse Tekes shares her story on teaching labs remotely with Simscape:
Check out the following webinar by Prof. Rick Hill to learn how you can use the new interactive Live Script Control Tutorials for MATLAB and Simulink for your teaching! Examples demonstrate interactive control design with Bode plots, Nyquist diagrams, engaging animations, and much more.
One of the objectives of lab-based instruction can be to develop students’ familiarity with hardware equipment. When students could no longer come to their lab in person, educators at HTW Dresden developed a MATLAB app using App Designer to replicate the controls on lab equipment such as a signal generator and oscilloscope. Read this article to learn more about how Dr. Henker and Dr. Kelber virtualized their electrical engineering labs.
If you use Simulink or Simscape models for your virtual labs, you can create an interactive display of controls and displays within your model diagram using blocks from the Dashboard library. To do so, connect block parameters to control blocks (knobs, buttons, and switches) and signals to displays blocks (scopes and gauges).
New customizable Knob, Vertical Slider, and Horizontal Slider blocks introduced in R2021a let you choose your own background image, foreground image, handle or slider image, and scale appearance. By combining these with custom gauge blocks, you can create intuitive and photo-realistic dashboards for interacting with your models, such as in the image below.
View examples of controlling simulations with interactive displays, or read some more Tips for Moving your Lab-based Classes Online.
I am trying to simulate the PMSM in fault mode with phase loss at 0.25 sec, but the simulation results are incorrect. For example, the rotor speed changes too much when a phase is missing. I tried to assemble the model in dq coordinates and abc coordinates on my own, but the results are the same. Who can tell you how to modify the engine model so that the simulation shows the correct results?
If you teach ordinary differential equations (ODEs) or use ODEs in your class, a common challenge you may have encountered is helping your students overcome the ‘mathematical intimidation’ of the concepts. You can use the Phase Plane and Slope Field apps, developed and shared by the MathWorks Online Teaching team, to let your students develop a visual intuition of ODEs by qualitative analysis.
These apps capture the functionality of the wildly popular PPlane and DField apps created by John C. Polking in MATLAB between 1995 and 2003. While similar in function to the original apps, the Slope Field and Phase Plane apps have been written entirely from scratch in MATLAB App Designer using modern MATLAB coding practices. This makes the new apps easier to maintain, edit, and use.
Get the apps on GitHub, and visit the MATLAB and Simulink Courseware page for more curriculum resources tailored to multiple disciplines.
MATLAB, Simulink, and their support for a variety of low-cost hardware has allowed many students to continue benefit from project-based learning, even from their own homes. Popular choices include the Arduino Engineering Kit and Raspberry Pi.
If you use or are considering using Raspberry Pi for your class, your students could benefit from using the Raspberry Pi Resource Monitor App. This app, introduced in MATLAB R2020b, will allow them to graphically configure target boards, deploy Simulink models and MATLAB functions, manage peripheral devices and interfaces, and perform common troubleshooting steps. Such an approach can simplify many of the technical challenges faced by educators who adopt a ‘Hardware at Home’ approach for their lab-based classes.
Click here to learn more about Raspberry Pi support from MATLAB and Simulink.
You may also want to learn more about Virtual Labs and Projects with MATLAB and Simulink, or read some Tips for Moving your Lab-based Classes Online.
MATLAB EXPO 2021 was held earlier this week. This global online event featured presentations and hands-on workshops covering topics from AI, to Application Deployment, and from Algorithm Development, to Teaching with MATLAB and Simulink. Dr. Magnus Egerstedt, Steve W. Chaddick School Chair and Professor of Electrical and Computer Engineering at Georgia Institute of Technology, spoke about Robotarium - a remotely accessible swarm robotics lab that remains freely accessible to anyone.
Robotarium allows users from all over the world to upload control code written in MATLAB and run experiments. Creating a swarm robotics lab is resource intensive, so such a remote access solution can be a great alternative. Watch Prof. Egerstedt introduce Robotarium.
You may also want to learn more about Virtual Labs and Projects with MATLAB and Simulink, or read some Tips for Moving your Lab-based Classes Online. If you are in China, Japan, or Korea, click here to register for dedicated EXPO events this summer.
Educators make their course material more interactive, promote self-directed learning, and increase student engagement through Live Editor. One of the advantages it offers is animated figures in your Live scripts. This can help students better understand dynamic systems such as the motion of a projectile or a double pendulum through visualization. With R2021a, you can now replay animations and explore individual frames without having to re-run the code.
To do so, use the playback controls that appear within the figure window after an animation is done playing. You can view and run this example animation within your browser.
Learn more about creating and sharing live scripts for applications such as flipped classrooms on this Instructional Resources page.
Many educators use Simulink for their virtual labs. Starting in R2021a, you can add comments to blocks in a Simulink model. If you use Simulink in your class, you can use this to prompt questions to your students or to provide them feedback. Students working in groups can collaborate directly in the Simulink Editor, such as by suggesting alternative designs.
Click here to learn how to view, add, and reply to comments on blocks.
You may also want to learn more about Virtual Labs and Projects with MATLAB and Simulink, or read some Tips for Moving your Lab-based Classes Online.
We will be hosting a seminar on MATLAB Grader, the product I manage at MathWorks, on April 21st at 7am EDT. If you are interested in adding autograding capabilities for #MATLAB to your course, MOOC, textbook, or learning environment and have questions, please join this seminar and take part in the live Q&A with the product team the following week. #autograding #assessments #onlineassessment #onlineteaching
MathWorks Seminar: Autograded Assessments with MATLAB Grader & LMS Integration
hi everyone could you explain to me why the three phase voltages in this video are not sinusoïdale and how to change them To be sinusoidale?
Youtube video: Motor Control Design with MATLAB and Simulink
link:https://www.youtube.com/watchv=lP4jbmthiyc&t=1103s&ab_channel=MATLAB
why does this work?
let me invite you to distant Second international conference "MATLAB and computer calculations in education, science and engineering" April 26 – 29, 2021 р., Kyiv"
First communication
It is impossible to imagine recent science and engineering without mathematical packages like MATLAB, MathCAD, Mathematica, Maple etc. However, they have not been sufficiently used in education yet. To improve the situation we manage these conferences. This will be the Second conference in Ukraine. The First was carried out in May 2019. Its results may be seen here. Unfortunately, it should be carried out remotely this time. However, it is to happen to have the tradition saved!
Scientists, engineers, educators from universities and high schools are welcome! Regretfully, we need to restrict the scope of topics to be considered this time. They are to be associated with education in university or school, methodology of mathematical package application, teaching disciplines with them. Variety of problems we see in such a way this time:
Problems and sections: MATLAB and computer use in universities MATLAB and computer use and computer use in high school
Conference will be held remotely under supervision of National aviation university (Kyiv). Like last time, (remote) master classes will be carried out to, from our point, to facilitate MATLAB use for beginners in education. To facilitate remote participation of foreign guests, two kinds of sessions will be managed: Morning sections, 10 a.m. – 15 p.m. Kyiv’ time will use Ukrainian and Russian languages. Evening sections, 18 p.m. -:- 21 p.m. Kyiv’ time but 10 a.m. – 1 p.m. in San Francisco will use English, for participants from Europe and USA.
Organizational Committee and rules for Abstracts may be seen here, or in department site or asked for per e-mail Ye_Gayev@i.ua and YevgenyAlGayev@gmail.com
Important dates Till April 10, 2021 – registration via form or directly via above addresses. Till April 20, 2021 р. – accepting Abstracts, 4 pages prepared on rules. Opening the conference April 26, 2021. Conference days 26 – 28, April 2021. Book of Abstracts will be placed in the Internet and in https://www.academia.edu/; DOI will supplement them.
It is important that three master-classes are to be carried out in Saturday and Sunday, April 24 and 25. Their topics are:
1. Prof. Yevgeny Gayev (NAU) «Algorithms that inspire to education»; 2. Prof. Sergii Iglin (Kharkov) «Heat Transfer problems with MATLAB»; 3. Prof. Sergey Sylantyev (Kyiv Nat. univ.) «AWS Cloud Services and Cloud Calculation».
Potential participants are kindly asked to register as soon as possible for enabling our next management steps!
Hi All,
Quick question regarding deriving PM flux linkage [Wb] from a torque constant estimated from data on a PMLSM.
I have an estimated torque constant Kt [N/A], which is from experimental test data. I will now parameterising my Simscape PMLSM block from this torque constant.
The literature seems confusing, to derive PM flux linkage [Wb] from the experimental torque contant do i include the (3/2) constant. Some examples include the constant and some omit, which one of the following is preferred for deriving the PM flux linkage?
Thanks
Patrick
Hi, MathWorks / MATLAB / Simulink community! I have recently started working my way through the book mentioned in the topic, and I am wondering if anybody out there would be interested and have time to help me review some of my work on the exercises. Specifically, I'm currently working "Exercise 7.9 - Challenge: Design of a Type 2 PLL" and I am not convinced that my implementation is correct, but I'm having some trouble with debugging.
Is anyone interested and have time to review my implementation and give some feedback? I'd definitely appreciate it.
Thanks!
Shaun Lippy Middleburg, VA, USA