BSPL Toolbox
Versión 1.0.3 (55,8 KB) por
Moreno, M.
Bézier toolbox for advanced curve analysis and processing, optimised for accuracy and speed.
BSPL
Bézier curve evaluation. https://uk.mathworks.com/matlabcentral/fileexchange/109179-high-precision-bezier-curves
x = rand(4, 2);
b = bspl(x);
b = bspl(x, 50);
b = bspl(x, rand(3, 1));
b = bspl(x, [], 1);
b = bspl(x, 1e3, 2, [1, 3, 3, 1]);
BSPLARC
Bézier curve arc-length calculation or estimation.
x = rand(4, 2);
a = bsplarc(x);
a = bsplarc(x, [0 0.5]);
a = bsplarc(x, [], 1);
a = bsplarc(x, 100, -1);
BPSLBOX
Bézier curve bounding box or tight bounding box.
x = rand(4, 3);
y = bsplbox(x);
y = bsplbox(x, 1);
y = bsplbox(x, [], 0);
BSPLC1D
Bézier curve discrete 1D curvature and normals.
x = bspl(rand(4, 3));
[k, n] = bsplc1d(x);
k = bsplc1d(x, []);
BSPLCRV
Bézier analytic signed curvature.
x = rand(4, 2);
k = bsplcrv(x);
k = bsplcrv(x, 100);
BSPLCSP
Bézier calculation of cusps and inflections (convexity).
x = rand(4, 2);
[y, t, z] = bsplcsp(x);
y = bsplcsp(x, []);
y = bsplcsp(x, 1);
BSPLCUT
Bézier curve subdivision.
x = rand(4, 2);
y = bsplcut(x);
y = bsplcut(x, rand(2, 1));
y = bsplcut(x, 3);
BSPLDCJ
Bézier curve evaluation using De-Casteljau.
x = rand(4, 2);
b = bspldcj(x);
b = bspldcj(x, 20);
b = bspldcj(x, rand(50, 1));
BSPLDER
Bézier curve derivatives or hodograph.
x = rand(5, 2);
y = bsplder(x, 3);
BSPLDIS
Bézier curve with uniform sampling.
x = rand(4, 3);
y = bspldis(x);
[y, t] = bspldis(x, 5);
BSPLFIT
Bézier curve fitting.
x = rand(5, 2);
[y, res, t] = bsplfit(x);
y = bsplfit(x, 3);
y = bsplfit(x, [], 0);
y = bsplfit(x, 3, 1);
y = bsplfit(x, [], 1e2);
BSPLFUN
Bézier curve algebraic operations.
x = rand(5, 3);
y = rand(4, 3);
z = bsplfun(x, y, 'plus');
z = bsplfun(x, x, -y, '*');
z = bsplfun(x, y, 'cross');
BSPLGET
Bézier curve control point finder.
x = rand(4, 2);
y = bsplget(x);
y = bsplget(x, 0);
y = bsplget(x, 1);
y = bsplget(x, 1e4);
BSPLINT
Bézier curve intersections or self-intersections.
x = rand(5, 2);
y = rand(4, 2);
[t, y] = bsplint(x, y);
t = bsplint(x);
t = bsplint(x, 0.5);
BSPLKIN
Bézier curve knot insertion.
x = rand(5, 2);
y = bsplkin(x, 3);
BSPLPCW
Bézier curve piecewise or composite construction (open or closed).
x = rand(4, 2);
y = bsplpcw(x);
y = bsplpcw(x, []);
BSPLPRO
Bézier curve point projection.
x = rand(4, 2);
y = rand(2, 2);
z = bsplpro(x, y);
BSPLVEC
Bézier curve tangent and normals.
x = rand(4, 2);
[t, n] = bsplvec(x);
t = bsplvec(x, 100);
t = bsplvec(x, rand(4, 1));
t = bsplvec(x, [], 1);
BER2BEZ
Polynomial to Bézier coefficients.
x = rand(4, 2);
y = ber2bez(x);
BEZ2BER
Bézier to polynomial coefficients.
x = rand(4, 2);
y = bez2ber(x);
Citar como
Moreno, M. (2025). BSPL Toolbox (https://www.mathworks.com/matlabcentral/fileexchange/111410-bspl-toolbox), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2022a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.3 | Faster bsplcsp for inflections through det(cross(d2(x), d1(x))) = 0 if non-empty second argument. Optimised bsplpcw calculation routines. Replaced bspl for its original file (see attached link). Corrected description typo in binomial [1, 3, 3, 1]. |
||
1.0.2 | Image change (mathworks bug: image has to be updated separately?) |
||
1.0.1 | Slight changes in BSPLPRO, BSPLARC and BSPLDIS. Added DEMOIMG with the executable file for the cover image. |
||
1.0.0 |
|