Sea-horse optimizer
Versión 5.0.0 (6,54 KB) por
S. Zhao
Sea-horse optimizer: A novel nature-inspired meta-heuristic for global optimization problems
This paper proposes a novel swarm intelligence-based metaheuristic called as sea-horse optimizer (SHO), which is inspired by the movement, predation and breeding behaviors of sea horses in nature. The performance of SHO is evaluated on 23 well-known functions and CEC2014 benchmark functions compared with six state-of-the-art metaheuristic algorithms. Five real-world engineering problems are utilized to test the effectiveness of SHO. The experimental results demonstrate that SHO is a high-performance optimizer and positive adaptability to deal with constraint problems.
Cite this paper as: Zhao S, Zhang T, Ma S, et al. Sea-horse optimizer: a novel nature-inspired meta-heuristic for global optimization problems[J]. Applied Intelligence, 2023, 53(10): 11833-11860. DOI: https://doi.org/10.1007/s10489-022-03994-3
It has been consistently selected for ESI-HOT Paper/Highly Cited Papers since July 2024.
Citar como
Zhao, Shijie, et al. “Sea-Horse Optimizer: a Novel Nature-Inspired Meta-Heuristic for Global Optimization Problems.” Applied Intelligence, vol. 53, no. 10, Springer Science and Business Media LLC, Sept. 2022, pp. 11833–60, doi:10.1007/s10489-022-03994-3.
Compatibilidad con la versión de MATLAB
Se creó con
R2018a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
