image thumbnail

Numerical derivative of analytic function

versión 1.0.0.0 (2.82 KB) por Daniel Ennis
Calculate the numerical derivative of an analytic function with different methods.

6K descargas

Actualizada 31 Mar 2016

Ver licencia

% This function returns the numerical derivative of an analytic function.
% Of special note, is the incorporation of the "complex step-derivative"
% approach which offers greatly improved derivative accuracy compared to
% forward and central difference approximations. This is especially germain
% when accuracy at the level of machine precision is a concern.
%
% This function was motivated by: http://www.biomedicalcomputationreview.org authored by Michael Sherman
% -The function with no inputs generates the example used in the above link.
% -For more information see the following citation which is also found in the above link:
% --Martins JR, Sturdza P, and Alonso JJ
% http://portal.acm.org/citation.cfm?id=838250.838251
% The complex-step derivative approximation
% ACM Trans. Math. Softw. 29(3) (2003)
%
% SYNTAX: dfdx=deriv(f,x,h,method)
%
% INPUTS: f - A function a handle (eg f=@(x) sin(x))
% x - Interval over which f(x) is defined
% h - Derivative step-size
% method - Numerical methods used to compute derivative
% 'forward2' - Two point forward difference
% 'forward3' - Three point forward difference
% 'central2' - Two point central difference
% 'central4' - Four point central difference
% 'complex' - Complex step-derivative approximation
%
% OUTPUTS: dfdx - Numerical estimate of the derivative of f(x)
%
% DBE 2006.07.31

Citar como

Daniel Ennis (2022). Numerical derivative of analytic function (https://www.mathworks.com/matlabcentral/fileexchange/11870-numerical-derivative-of-analytic-function), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R14SP3
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Agradecimientos

Inspiración para: Adaptive Robust Numerical Differentiation

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!