Anti coronavirus optimization algorithm

This is a basic version of the anti coronavirus optimization (ACVO) algorithm for training purposes.
162 Descargas
Actualizado 30 oct 2022

Ver licencia

This paper introduces a new swarm intelligence strategy, anti coronavirus optimization (ACVO) algorithm. This algorithm is a multi-agent strategy, in which each agent is a person that tries to stay healthy and slow down the spread of COVID-19 by observing the containment protocols. The algorithm composed of three main steps: social distancing, quarantine, and isolation. In the social distancing phase, the algorithm attempts to maintain a safe physical distance between people and limit close contacts. In the quarantine phase, the algorithm quarantines the suspected people to prevent the spread of disease. Some people who have not followed the health protocols and infected by the virus should be taken care of to get a full recovery. In the isolation phase, the algorithm cared for the infected people to recover their health. The algorithm iteratively applies these operators on the population to find the fittest and healthiest person. The proposed algorithm is evaluated on standard multi-variable single-objective optimization problems and compared with several counterpart algorithms. The results show the superiority of ACVO on most test problems compared with its counterparts.

Citar como

Hojjat Emami (2025). Anti coronavirus optimization algorithm (https://la.mathworks.com/matlabcentral/fileexchange/119803-anti-coronavirus-optimization-algorithm), MATLAB Central File Exchange. Recuperado .

Emami, Hojjat. “Anti-Coronavirus Optimization Algorithm.” Soft Computing, vol. 26, no. 11, Springer Science and Business Media LLC, Mar. 2022, pp. 4991–5023, doi:10.1007/s00500-022-06903-5.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2022b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0