fitellipse.m

Fit ellipses to 2D points using linear or nonlinear least squares
14,2K Descargas
Actualizado 4 mar 2016

Ver licencia

There are two main methods for least squares ellipse fitting:
1) Minimise algebraic distance, i.e. minimise sum(F(x)^2) subject to some constraint, where F(x) = x'Ax + b'x + c
This is a linear least squares problem, and thus cheap to compute. There are many different possible constraints, and these produce different fits. fitellipse supplies two:
[z, a, b, al] = fitellipse(x, 'linear')
[z, a, b, al] = fitellipse(x, 'linear', 'constraint', 'trace')
See published demo file for more information.
2) Minimise geometric distance - i.e. the sum of squared distance from the data points to the ellipse. This is a more desirable fit, as it has some geometric meaning. Unfortunately, it is a nonlinear problem and requires an iterative method (e.g. Gauss Newton) to solve it. This is implemented as the default option in fitellipse. If it fails to converge, it fails gracefully (with a warning), returning the linear least squares estimate used to derive the start value

[z, a, b, alpha] = fitellipse(x)

plotellipse(z, a, b, alpha) can be used to plot the fitted ellipses

Citar como

Richard Brown (2024). fitellipse.m (https://www.mathworks.com/matlabcentral/fileexchange/15125-fitellipse-m), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2016a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Least Squares en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0

MathWorks update: Added Live Script.