Quasi-random Fractal Search (QRFS)

Versión 1.0.0 (9,29 KB) por Diego Oliva
Here is proposed the Quasi-random Fractal Search (QRFS): A dynamic metaheuristic with sigmoid population decrement for global optimization
90 Descargas
Actualizado 25 jun 2024

Ver licencia

This study introduces a new optimization approach called quasirandom metaheuristic based on fractal search (QRFS), which harnesses the power of fractal geometry, low discrepancy sequences, and intelligent search space partitioning techniques. The QRFS uses fractals’ inherent self-similarity and intricate structure to guide the solution space exploration. For the proposal, a deterministic but quasi-random element is used in the search process using low discrepancy sequences, such as Sobol, Halton, Hammersley, and Latin Hypercube. This integration allows the algorithm to systematically cover the search space while maintaining the level of diversity necessary for efficient exploration. The QRFS employs a dynamic strategy of partitioning the search space and reducing the population of solutions to optimize the use of function accesses, which causes it to adapt well to the characteristics of the problem. The algorithm intelligently identifies and prioritizes promising regions within the fractal-based representation, allocating computational resources where they are most likely to yield optimal solutions.

Citar como

Diego Oliva (2025). Quasi-random Fractal Search (QRFS) (https://www.mathworks.com/matlabcentral/fileexchange/168761-quasi-random-fractal-search-qrfs), MATLAB Central File Exchange. Recuperado .

Beltran, Luis A., et al. “Quasi-Random Fractal Search (QRFS): A Dynamic Metaheuristic with Sigmoid Population Decrement for Global Optimization.” Expert Systems with Applications, vol. 254, Elsevier BV, Nov. 2024, p. 124400, doi:10.1016/j.eswa.2024.124400.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2024a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0