SOSMC-Based Neural Adaptive Control for Pneumatic Artificial
Versión 1.0.0 (32,5 KB) por
Maime
This Simulink model demonstrates a second-order sliding mode controller enhanced with a neural network for precise tracking and robustness i
This project presents a Simulink implementation of a hybrid control strategy combining a Second-Order Sliding Mode Controller (SOSMC) with a Neural Network compensator to control Pneumatic Artificial Muscles (PAMs).
The controller design aims to enhance trajectory tracking performance while preserving robustness against modeling uncertainties and external disturbances. The neural network component estimates unknown dynamics online, reducing the tracking error and improving system stability.
Key Features:
- Simulink model using SOSMC for high robustness
- Online neural network adaptation for uncertainty compensation
- Designed for nonlinear PAM actuators
- Demonstrates improved tracking performance over conventional methods
This model is useful for researchers and developers working on bio-inspired actuators, robotics, and intelligent nonlinear control systems.
Citar como
Maime (2025). SOSMC-Based Neural Adaptive Control for Pneumatic Artificial (https://la.mathworks.com/matlabcentral/fileexchange/181535-sosmc-based-neural-adaptive-control-for-pneumatic-artificial), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2025a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0 |