PSO Algorithms Optimization

Versión 1.0.0 (4,82 KB) por Yousef
What PSO is Particle Swarm Optimization is a population-based, stochastic optimization method inspired by flocking/swarming behavior. It se
2 Descargas
Actualizado 25 dic 2025

Ver licencia

Common PSO variants you’ll see in MATLAB work
  1. Inertia-weight PSOUses www (often decreased over time) to shift from exploration → exploitation.
  2. Constriction-factor PSO (Clerc-Kennedy)Uses a stability factor to control velocity and avoid explosion.
  3. Local-best (lbest) PSOUses neighborhood best instead of global best; can reduce premature convergence.
  4. Hybrid PSOPSO combined with local search (e.g., fmincon / fminunc) for refinement.
  5. Binary PSO / Discrete PSOFor feature selection, scheduling, combinatorial problems.
Handling constraints (typical approaches in MATLAB)
  • Bound constraints: clamp positions to bounds or reflect velocities.
  • General constraints:
  • penalty functions added to objective
  • feasibility rules (prefer feasible solutions)
  • hybridize with constrained solvers (PSO for global search, fmincon for local feasible refinement)
MATLAB implementation options
1) Built-in (recommended if you have Global Optimization Toolbox)
MATLAB provides particleswarm for bound-constrained optimization:
  • you define objective function
  • specify number of variables and bounds
  • tune options like swarm size, max iterations, tolerances
Good for: continuous variables, black-box objectives, engineering tuning problems.2) Custom PSO code (common in research/teaching)
You manually code:
  • initialization
  • pbest/gbest tracking
  • velocity/position updates
  • boundary handling
  • stopping criteria
Good for: custom constraints, discrete variants, hybrid PSO, novel research modifications.
Key tuning parameters (rule-of-thumb)
  • Swarm size: 20–100 (higher for harder/high-dimensional problems)
  • Max iterations: depends on budget; often 100–1000
  • www: ~0.9 down to ~0.4 (linearly decreasing is common)
  • c1,c2c_1, c_2c1,c2: often around 1.5–2.5 each (balance matters)
  • Velocity limits: helps stability; prevents particles from overshooting
Strengths and weaknesses
Strengths
  • No gradients required
  • Works well on nonlinear/multi-modal landscapes
  • Easy to parallelize (MATLAB supports parallel objective evaluation in many setups)
Weaknesses
  • Can converge prematurely (esp. high c2c_2c2, low diversity)
  • Scaling to very high dimensions can be tough
  • Needs parameter tuning; performance depends on settings and constraint handling
Typical MATLAB workflow
  1. Define objective: f = @(x) ...
  2. Define bounds: lb, ub
  3. Choose PSO approach: particleswarm or custom
  4. Set options: swarm size, iterations, stopping tolerances
  5. Run optimization
  6. Validate solution + sensitivity checks (rerun with different seeds)

Citar como

Yousef (2025). PSO Algorithms Optimization (https://la.mathworks.com/matlabcentral/fileexchange/182907-pso-algorithms-optimization), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2023b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

ypea102-particle-swarm-optimization-master/PSO

Versión Publicado Notas de la versión
1.0.0