poly_gcd(p,q)

Find polynomial GCD by "Leading-coefficient Elinimation"
2,5K Descargas
Actualizado 22 ene 2018

Ver licencia

In the longhand polynomial division given as
P(k) = P(k-2) - P(k-1)*Q(k)
The quotient Q(k) and the remainder P(k) are obtained from dividing the dividend P(k-2) by the divisor P(k-1). If we can make Q(k) = 1, by converting P(k-2) and P(k-1) into equal degree and monic, then the longhand polynomial division becomes simply the "monic polynomial subtraction" (MPS):
P(k) = P(k-2) - P(k-1)
For a pair of given polynomials p(x) and q(x) of degree n and m, n>m, we set
P(1) = p(x)/p_0
P(2) = q(x)*x^(n-m)/q_0
Applying the MPS repeatedly starting from k=3, until k=K+1, such that
P(K+1) = P(k-1) - P(k) = 0
then we get our desired polynomial GCD as
gcd(p,q) = P(K).
The source code uses only basic MATLAB built-in functions. Its listing is only 17 lines total !
Amazingly, this simple routine gives the expected results for the test polynomials and their derivatives of very high degree, such as
p(x) = (x + 1)^1000
p(x) = (x + 123456789)^30
p(x) = (1234x + 56789)^60
p(x) = (x^4-2x^3+3x^2-4x +5)^50
p(x) = (x^4 - 1)^25
*************** UPDATE (10/05/09): **************
The approach "Leading-coefficient Elinimation" is revised from the original "Monic Polynomial Subtraction".
It also reduces almost half of the total arithematic operations.
The total source code listing is only 12 lines!
*************** UPDATE (01/22/2018): **************
The source code function g = poly_gcd(p,q) is revised and updated. It greatly reduces the overall operation procedures.
Please see the typical examples in the comment section.

Citar como

Feng Cheng Chang (2024). poly_gcd(p,q) (https://www.mathworks.com/matlabcentral/fileexchange/20859-poly_gcd-p-q), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R13
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Polynomials en Help Center y MATLAB Answers.
Agradecimientos

Inspiración para: Polynomials with multiple roots solved

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.8.0.0

The approach "Leading-coefficient Elinimation" is revised from the original "Monic Polynomial Subtraction". Update the m-file. The total m-file listing is fewer than 15 lines!

The source code function is revised and updated. It reduces the overall operation steps.

1.4.0.0

Revise the m-file. The source code listing is only 17 lines total !

1.3.0.0

Update the m-file -- improve the case that the leading coef of given poly is very huge.

1.2.0.0

Update the m-file.

1.1.0.0

Update the m-file and the description.

1.0.0.0

Update m-file to include PRS.