Parallel Analysis (PA) to for determining the number of components to retain from PCA.

component is retained if the associated eigenvalue is bigger than the 95th of the distribution of ei
962 Descargas
Actualizado 10 ene 2014

Ver licencia

% Parallel Analysis (PA) to for determining the number of components to retain from PCA. component is retained if the associated eigenvalue is bigger than the 95th of the distribution of eigenvalues derived from the random data.
% Syntax:
% ======
% pa_test(x, nShuffle, alpha, princomp_parameters[ ])
% x - the data matrix (nXp where n is the number of observation and p is dimension of each observation)
% nShuffle - number of shuffles. optional, default = 100
% alpha - significance level. optional, default 0.05
% princomp_parameters - parameters to pass to the princomp function (see help princomp). optional, default ={true,'Centered',false}

% Background:
% ==========
% From Wikipedia: http://en.wikipedia.org/wiki/Factor_analysis
% Horn's Parallel Analysis (PA):
% A Monte-Carlo based simulation method that compares the observed eigenvalues with those obtained from uncorrelated normal variables.
% A factor or component is retained if the associated eigenvalue is bigger than the 95th of the distribution of eigenvalues derived from the random data.
% PA is one of the most recommendable rules for determining the number of components to retain, but only few programs include this option.

% References:
% * Ledesma, R.D.; Valero-Mora, P. (2007). "Determining the Number of Factors to Retain in EFA: An easy-to-use computer program for carrying out Parallel Analysis". Practical Assessment Research & Evaluation 12 (2): 1–11.

Citar como

Hanan Shteingart (2025). Parallel Analysis (PA) to for determining the number of components to retain from PCA. (https://la.mathworks.com/matlabcentral/fileexchange/44996-parallel-analysis-pa-to-for-determining-the-number-of-components-to-retain-from-pca), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2013b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y MATLAB Answers.
Etiquetas Añadir etiquetas
pca

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0.0