Principal Component Analysis for large feature and small observation
Versión 1.1.0.0 (379 Bytes) por
Kim Xu
This file is PCA for large feature.
Small size of observation and huge features happens a lot in shape/image and bioinformatics analysis. This file provides an alternative way of perform PCA analysis.
More detail about PCA please check: http://www.math.fsu.edu/~qxu/TCI.html
Citar como
Kim Xu (2024). Principal Component Analysis for large feature and small observation (https://www.mathworks.com/matlabcentral/fileexchange/45967-principal-component-analysis-for-large-feature-and-small-observation), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Se creó con
R2009b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- AI and Statistics > Statistics and Machine Learning Toolbox > Dimensionality Reduction and Feature Extraction >
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y MATLAB Answers.
Etiquetas
Agradecimientos
Inspiración para: EOF
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.