inv_det_0(A)

Inverse and determinant of a matrix by order expansion and condensation
193 Descargas
Actualizado 15 nov 2014

Ver licencia

The inverse and determinant of a given square matrix can be computed by applying iteration routine involved simultaneously matrix order expansion and condensation process. At the conclusion of iterations process, the expansion routine results in the inverse (iA) of the given matrix (A), and the condensation routine generates an array (p) of elements (Schur components), which gives the determinant (dA)of the given matrix.
[iA,dA,p] = inv_det_0.(A).
The routine code is very compact, and works for fairly large order matrices such as A = randn(99). The total number of multiplication/division operations is about N^3, which is need for the product of two NxN matrices.
The routine involves simple arithmatic division, and will fail if the divider becomes zeros. In such cases, we must interchange among rows and columns of the given matrix, before running the routine.

Citar como

Feng Cheng Chang (2024). inv_det_0(A) (https://www.mathworks.com/matlabcentral/fileexchange/47444-inv_det_0-a), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R12
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Operating on Diagonal Matrices en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.2.0.0

Combine order expansion and condensation routines into a simple compact routine

1.1.0.0

Submitted files det_inv_0.m and det_0.m must be independently separated.

1.0.0.0