Matrix inverse and determinant
The inverse and determinant of a given square matrix can be computed by the following routine applying simultaneously matrix order expansion and condensation. After completing the iteration, the expansion process results in the inverse of the given matrix (invM), and the condensation process generate an array of pivot elements (p) which eventualy gives the determinant (detM) of the given matrix (M):
[invM,detM,p,s,rc] = inv_det_opt(M).
In summary: (1) if the given matrix is non-singular then its determinant is found to be equal to the product of pivot elements. (2) if the last pivot element is found shrinking sharply toward zero, then the given matrix is said to be singular.
Citar como
Feng Cheng Chang (2024). Matrix inverse and determinant (https://www.mathworks.com/matlabcentral/fileexchange/48600-matrix-inverse-and-determinant), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Agradecimientos
Inspirado por: inv_det_0(A), mtx_d(A,D,d)
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.0.0.0 | Update and re-write the m-code.
|