Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion

Empirical Orthogonal Function (EOF) analysis is often used in Meteorology and Climatology
652 Descargas
Actualizado 25 abr 2016

Ver licencia

In statistics and signal processing, the method of empirical orthogonal function (EOF) analysis is a decomposition of a signal or data set in terms of orthogonal basis functions which are determined from the data. It is the same as performing a principal components analysis on the data, except that the EOF method finds both time series and spatial patterns. The term is also interchangeable with the geographically weighted PCAs in geophysics.
if there are too many spatial grids, the spatiotemporal convertion is often performed to quicken the process, other than EOF_analysis.
As required by users, a new version of Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion is provided here.

Citar como

Zhou Chunlüe (2024). Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion (https://www.mathworks.com/matlabcentral/fileexchange/54675-empirical-orthogonal-function-eof-with-spatiotemporal-convertion), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2011b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Weather and Atmospheric Science en Help Center y MATLAB Answers.
Agradecimientos

Inspirado por: Empirical Orthogonal Function (EOF) analysis

Inspiración para: EOF

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.2.0.0

update the figure
add some example figures
As required by users, a new version of Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion is provided here.

1.1.0.0

As required by users, a new version of Empirical Orthogonal Function (EOF) with Spatiotemporal Convertion is provided here.

1.0.0.0