Adaptive Fusion of Kernels for Radial Basis Function Neural Network

Simulation of adaptive fusion of two kernels of RBF for pattern recognition example
406 Descargas
Actualizado 4 sep 2016

Ver licencia

In this algorithm the two popular similarity measures, Cosine distance (angle) and Euclidean distance are fused together and the mixing weight is made adaptive using gradient decent algorithm. The submission is the example for pattern recognition problem utilized in the paper [1].
Reference
[1] http://link.springer.com/article/10.1007/s00034-016-0375-7
% @article{khan2016novel,
% title={A Novel Adaptive Kernel for the RBF Neural Networks},
% author={Khan, Shujaat and Naseem, Imran and Togneri, Roberto and Bennamoun, Mohammed},
% journal={Circuits, Systems, and Signal Processing},
% pages={1--15},
% year={2016},
% publisher={Springer US}
% }

Citar como

Shujaat Khan (2025). Adaptive Fusion of Kernels for Radial Basis Function Neural Network (https://la.mathworks.com/matlabcentral/fileexchange/59001-adaptive-fusion-of-kernels-for-radial-basis-function-neural-network), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2011a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Pattern_Recognition_Using_NAK_RBF/

Versión Publicado Notas de la versión
1.0.0.0