Adaptive Fusion of Kernels for Radial Basis Function Neural Network
In this algorithm the two popular similarity measures, Cosine distance (angle) and Euclidean distance are fused together and the mixing weight is made adaptive using gradient decent algorithm. The submission is the example for pattern recognition problem utilized in the paper [1].
Reference
[1] http://link.springer.com/article/10.1007/s00034-016-0375-7
% @article{khan2016novel,
% title={A Novel Adaptive Kernel for the RBF Neural Networks},
% author={Khan, Shujaat and Naseem, Imran and Togneri, Roberto and Bennamoun, Mohammed},
% journal={Circuits, Systems, and Signal Processing},
% pages={1--15},
% year={2016},
% publisher={Springer US}
% }
Citar como
Shujaat Khan (2025). Adaptive Fusion of Kernels for Radial Basis Function Neural Network (https://la.mathworks.com/matlabcentral/fileexchange/59001-adaptive-fusion-of-kernels-for-radial-basis-function-neural-network), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- AI and Statistics > Deep Learning Toolbox > Train Deep Neural Networks > Function Approximation, Clustering, and Control > Function Approximation and Clustering > Pattern Recognition >
Etiquetas
Agradecimientos
Inspiración para: Function approximation using "A Novel Adaptive Kernel for the RBF Neural Networks"
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Pattern_Recognition_Using_NAK_RBF/
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0.0 |
