Optimal production planning with single-level (hard penalty approach)

Versión 1.0.0.0 (11,5 KB) por SKS Labs
An optimization test suite involving 54 continuous variables
81 Descargas
Actualizado 16 jun 2018

This submission can be used to evaluate the performance of optimization techniques on problems with continuous variables. This optimization problem arises for maximization of profit in production planning. However these files can be used as black-box optimization problems.

There are eight minimization optimization problems in this suite (case1.p, case2.p, case3.p, case4.p, case5.p, case6.p, case7.p and cas8.p). All the cases (Case 1 to Case 8) have a problem dimension of 54 continuous variables .

Each of them follow hard penalty approach and has the following format

[ F ] = case1(X);

Input: population (or solution, denoted by X) and its
Output: objective function values (F) of the population members.

The file ProblemDetails.p can be used to determine the lower and upper bounds along with the function handle for each of the cases.

The format is [lb,ub,fobj] = ProblemDetails(n);

Input: n is an integer from 1 to 8.
Output: (i) the lower bound (lb),
(ii) the upper bound (ub), and
(iii) function handle (fobj).

The file Script.m shows how to use these files along with an optimization algorithm (SanitizedTLBO).

Note:

(i) Case 1 - 4 have the same problem structure but employ different data; Case 5 - 8 has same set of data as compared to Case 1 - 4, but do not employ a certain feature (flexible) of the problem.

(ii) The objective function files are capable of determining the objective function values of multiple solutions (i.e., if required, the entire population can be sent to the objective function file).

Reference :

1. Chauhan, S., S., and Kotecha P. (2016) Single level production planning in petrochemical industries using Moth-flame optimization,IEEE Region 10 Conference (TENCON), Singapore, https://doi.org/10.1109/TENCON.2016.7848003.

2. Chauhan, S., S., and Kotecha P. (2018), Single-Level Production Planning in Petrochemical Industries using Novel Computational Intelligence Algorithms, Metaheuristic Optimization Methods: Algorithms and Engineering Applications, Springer.

Citar como

SKS Labs (2024). Optimal production planning with single-level (hard penalty approach) (https://github.com/SKSLAB/Optimal-production-planning-with-single-level-hard-penalty-approach), GitHub. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2015a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Etiquetas Añadir etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
1.0.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.