GPU Coder Interface for Deep Learning
Use GPU Coder to generate optimized CUDA code for deep learning networks
2,9K Descargas
Actualizado
11 sep 2024
GPU Coder generates optimized CUDA code from MATLAB code and Simulink models for deep learning, embedded vision, and autonomous systems. You can deploy a variety of pretrained deep learning networks such as YOLOv2, ResNet-50, SegNet, MobileNet, and others from Deep Learning Toolbox to NVIDIA GPUs. You can generate optimized code for pre-processing and post-processing along with your trained deep learning networks to deploy complete applications.
When used with GPU Coder, GPU Coder Interface for Deep Learning provides the ability for the generated code to call into cuDNN or TensorRT optimization libraries for NVIDIA GPUs.
When used in MATLAB with Deep Learning Toolbox and without GPU Coder, you can accelerate the execution of deep learning networks on NVIDIA GPUs.
This support package is functional for R2018b and beyond.
If you have download or installation problems, please contact Technical Support - https://www.mathworks.com/support/contact_us.html
Compatibilidad con la versión de MATLAB
Se creó con
R2018b
Compatible con cualquier versión desde R2018b hasta R2024b
Compatibilidad con las plataformas
Windows macOS (Apple Silicon) macOS (Intel) LinuxCategorías
- AI and Statistics > Deep Learning Toolbox >
- Code Generation > GPU Coder >
- MATLAB > External Language Interfaces > C++ with MATLAB > Call C++ from MATLAB >
Más información sobre Deep Learning Toolbox en Help Center y MATLAB Answers.
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.