Matlab code for Automatic-image-Co-Segmentation-using-GMS

An image co-segmentation algorithm that was presented in ICIP'14. It has been recipient of Top 10% paper award as well.
412 Descargas
Actualizado 9 sep 2018

Most existing high-performance co-segmentation algorithms
are usually complicated due to the way of co-labeling a set of
images and the requirement to handle quite a few parameters
for effective co-segmentation. In this paper, instead of relying on the complex process of co-labeling multiple images, we perform segmentation on individual images but based on
a combined saliency map that is obtained by fusing single image
saliency maps of a group of similar images. Particularly,
a new multiple image-based saliency map extraction,
namely geometric mean saliency (GMS) method, is proposed
to obtain the global saliency maps. In GMS, we transmit
the saliency information among the images using the warping
technique. Experiments show that our method is able to
outperform state-of-the-art methods on three benchmark co-segmentation
datasets.

Citar como

Koteswar Rao Jerripothula (2024). Matlab code for Automatic-image-Co-Segmentation-using-GMS (https://github.com/jkoteswarrao/Automatic-image-Co-Segmentation-using-geometric-mean-saliency-Top-10-paper-award-ICIP-14-), GitHub. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2013b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Feature Detection and Extraction en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

No se pueden descargar versiones que utilicen la rama predeterminada de GitHub

Versión Publicado Notas de la versión
1.0.3

Updated title

1.0.2

added tags

1.0.1

added pic

1.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.