Numerical Integration Cylindrical Coordinates - Volume
Simple program:
Enter a set of points.
Enter a set of coordinates for each point.
The program interpolates and creates a spline.
It then computes the volume integral of this spline, revolved around the axis of the circle.
This does not compute a line integral for the polynomial created by the data set.
Reason: in order to compute a correct volume integral a correct cylindrical coordinates infinitesimal area element is used in the integral, and this means multiplying the argument of the integral by the radius coordinate variable, which in effect means increasing the degree of the polynomial from polyfit.
Test the example before by hand, the integral of X^2 multiplied by X over a radius, revolved by 2*pi.
INTEGRAL = ( x^2 ) * ( X dX d THETA )
The infinitesimal area element is dS = X * dX * dTHETA.
Remember that the interval of the function inside the integral is from X = 0 to X = 5, THETA from 0 to 2 pi.
Citar como
Miguel (2025). Numerical Integration Cylindrical Coordinates - Volume (https://la.mathworks.com/matlabcentral/fileexchange/69824-numerical-integration-cylindrical-coordinates-volume), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
| Versión | Publicado | Notas de la versión | |
|---|---|---|---|
| 1.0.0 |
