Binary Particle Swarm Optimization for Feature Selection

Versión 1.3 (61,2 KB) por Jingwei Too
Simple algorithm shows how binary particle swarm optimization (BPSO) used in feature selection problem.
1,9K Descargas
Actualizado 19 dic 2020

Simple binary particle swarm optimization (BPSO) for feature selection tasks, which can select the potential features to improve the classification accuracy.

The < Main.m file > demos an example on how to use BPSO with classification error rate (computed by KNN) as the fitness function for feature selection problem using benchmark data-set.

**********************************************************************************************************************************

Citar como

Too, Jingwei, et al. “A New Co-Evolution Binary Particle Swarm Optimization with Multiple Inertia Weight Strategy for Feature Selection.” Informatics, vol. 6, no. 2, MDPI AG, May 2019, p. 21, doi:10.3390/informatics6020021.

Ver más estilos

Too, Jingwei, et al. “EMG Feature Selection and Classification Using a Pbest-Guide Binary Particle Swarm Optimization.” Computation, vol. 7, no. 1, MDPI AG, Feb. 2019, p. 12, doi:10.3390/computation7010012.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2018a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Particle Swarm en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.3

See release notes for this release on GitHub: https://github.com/JingweiToo/Binary-Particle-Swarm-Optimization-for-Feature-Selection/releases/tag/1.3

1.2

Improve code for the fitness function

1.1.0

change to hold-out

1.0.4

-

1.0.3

Changes Vmin=-Vmax

1.0.2

-

1.0.1

Add convergence plot

1.0.0

Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.
Para consultar o notificar algún problema sobre este complemento de GitHub, visite el repositorio de GitHub.