Common Spatial Patterns (CSP)

A vectorized, quick and simple implementation of the CSP algorithm.
1,2K Descargas
Actualizado 19 jul 2019

Ver licencia

The function 'csp' performs a bearable implementation of the Common Spatial Patterns (CSP) algorithm, which consists of a binary data-driven supervised data projection of a signal by maximizing the variance of the positive class while minimizing the variance of the negative one.

Input parameters:
- X1 and X2: Signals for the positive and negative class, respectively, whose dimensions must be [classes x samples].

Output parameters:
- W: Filter matrix (mixing matrix), whose columns are spatial filters.
- lambda: Eigenvalues of each filter.
- A: Demixing matrix.

Once the W is trained, the projection of new data X must be computed as:
X_csp = W'*X;

An example of use is included in the 'csp_example.m' file.

Citar como

Víctor Martínez-Cagigal (2024). Common Spatial Patterns (CSP) (https://www.mathworks.com/matlabcentral/fileexchange/72204-common-spatial-patterns-csp), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2018a
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux
Categorías
Más información sobre Discrete Multiresolution Analysis en Help Center y MATLAB Answers.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0