Nyquist plot with logarithmic amplitudes
A polar diagram where the amplitude of the open-loop transfer function h0 is on a logarithmic scale, is presented. This gives a one-size-fits-all diagram with less need for zooming in and out, and no need for additional reasoning about infinite-radius encirclements when there are poles on the imaginary axis -- as opposed to what is often necessary with the standard polar (Nyquist-) diagram. All properties needed for stability considerations are upheld, such as encirclements, gain and phase margins. The path for s in the loop transfer function is carefully chosen with regard to possible poles on the imaginary axis. Small excursions into the right half plane in the form of arcs of different-sized logarithmic spirals result in corresponding large but finite arcs for h0 that do not overlap in the logarithmic polar plots.
Encirclements are counted and info about poles in RHP, and open- and closed-loop (in)stability, is given.
New in February 2009: Bugs are fixed related to encirclement counting.
An added functionality is now that the function also counts poles on the im-axis for the closed-loop system, if any. If such poles exist, this corresponds to the graph going through -1. Encirclement counting is then impossible and is disabled.
Note: the program at this stage works only for SISO and continuous-time systems.
Citar como
Trond Andresen (2024). Nyquist plot with logarithmic amplitudes (https://www.mathworks.com/matlabcentral/fileexchange/7444-nyquist-plot-with-logarithmic-amplitudes), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxCategorías
- Control Systems > Control System Toolbox > Linear Analysis > Time and Frequency Domain Analysis > Frequency-Domain Analysis >
Etiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.
Versión | Publicado | Notas de la versión | |
---|---|---|---|
1.6.0.0 | Small bug fixed
|
||
1.5.0.0 | small bug fixed |
||
1.4.0.0 | New in February 2009: Bugs are fixed. Furthermore, the function also counts possible poles on the im-axis for the closed-loop system. This corresponds to the graph going through -1. Encirclement counting is then impossible and is disabled. |
||
1.2.0.0 | New in February 2009: Bugs are fixed. Furthermore,
|
||
1.0.0.0 | A suggestion from a user is implemented: Encirclements are counted and info about poles in RHP, and open- and closed-loop (in)stability, is given. |