SHAMODE / SHAMODE-WO,

Success History–based Adaptive Multi-Objective Differential Evolution (SHAMODE) and the Whale Optimization hybrid version (SHAMODE-WO)
317 Descargas
Actualizado 24 sep 2020

Ver licencia

Two constrained multiobjective metaheuristics are presented.
1) Success History–based Adaptive Multi-Objective Differential Evolution (SHAMODE) is an improved multiobjective version of Success History-based Adaptive Differential Evolution (SHADE) by integrating modified adaptive strategies and non-dominated sorting algorithm.
2) Success History–based Adaptive Multi-Objective Differential Evolution with Whale Optimization (SHAMODE-WO) is an improved multiobjective version of Success History-based Adaptive Differential Evolution (SHADE) by integrating modified adaptive strategies, non-dominated sorting algorithm, and additional population update operator from Whale Optimization Algorithm (WOA).

The algorithms are published in:
Panagant, N., Bureerat, S., & Tai, K. (2019). A novel self-adaptive hybrid multi-objective meta-heuristic for reliability design of trusses with simultaneous topology, shape and sizing optimisation design variables. Structural and Multidisciplinary Optimization, 60(5), 1937-1955. DOI: https://doi.org/10.1007/s00158-019-02302-x

Citar como

Panagant, Natee, et al. “A Novel Self-Adaptive Hybrid Multi-Objective Meta-Heuristic for Reliability Design of Trusses with Simultaneous Topology, Shape and Sizing Optimisation Design Variables.” Structural and Multidisciplinary Optimization, vol. 60, no. 5, Springer Science and Business Media LLC, June 2019, pp. 1937–55, doi:10.1007/s00158-019-02302-x.

Ver más estilos
Compatibilidad con la versión de MATLAB
Se creó con R2018b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.2

Fix some bugs

1.0.1

Update license file

1.0.0