Conjugate Gradient Method

Unconstrained Optimization Problem
546 Descargas
Actualizado 8 ene 2021

Ver licencia

Fletcher–Reeves Method
The iterative procedure of Fletcher–Reeves method can be stated as follows:
1. Start with an arbitrary initial point X1.
2. Set the first search direction S1 =−∇f(X1) = −∇f1.
3. Find the point X2 according to the relation
X2 = X1 + λ∗1 S1
where λ∗1 is the optimal step length in the direction S1. Set i = 2 and go to the
next step.
4. Find ∇fi = ∇f(Xi), and set
Si = −∇fi +
|∇fi|2
|∇fi−1|2 Si−1
5. Compute the optimum step length λ∗i in the direction Si, and find the new point
Xi+1 = Xi + λ∗i Si
6. Test for the optimality of the point Xi+1. If Xi+1 is optimum, stop the process.
Otherwise, set the value of i = i + 1 and go to step 4.

Citar como

Narayan Das Ahirwar (2026). Conjugate Gradient Method (https://la.mathworks.com/matlabcentral/fileexchange/85338-conjugate-gradient-method), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2020b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.0