Ostrogradsky's Method

Function decomposes a proper rational fraction integrand via Ostrogradsky's method.
8 Descargas
Actualizado 18 feb 2021

Ver licencia

Syntax:

[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)

Description:

For an integral with an integrand that is a proper rational fraction, Ostrogradsky's decomposes the integral as

$\int \frac{P(x)}{Q(x)} \, dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} \, dx. \tag*{} $

The inputs to ostrogradskysmethod are symbolic polynomials P and Q, with P being lesser degree than Q. The outputs are symbolic polynomials P_1, Q_1, P_2, and Q_2.

Examples:

Use Ostrogradsky's method to decompose an integral with P(x) = x^3-x^2+x+1 and Q(x) = (x^2+1)^3

syms x
P = x^3-x^2+x+1;
Q = (x^2+1)^3;
[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)

P_1 =
x^3/4 - x^2/2 + (3*x)/4 - 1/2
Q_1 =
(x^2 + 1)^2
P_2 =
1/4
Q_2 =
x^2 + 1

Take the integral via Ostrogradsky's method and confirm that it matches MATLAB's solution

I = P_1/Q_1+int(P_2/Q_2)
I_c = int(P/Q)

I =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2
I_c =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2

Citar como

Ryan Black (2024). Ostrogradsky's Method (https://www.mathworks.com/matlabcentral/fileexchange/87497-ostrogradsky-s-method), MATLAB Central File Exchange. Recuperado .

Compatibilidad con la versión de MATLAB
Se creó con R2018b
Compatible con cualquier versión
Compatibilidad con las plataformas
Windows macOS Linux

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Versión Publicado Notas de la versión
1.0.3

edit description

1.0.2

added example

1.0.1

edit description

1.0.0