Ostrogradsky's Method
Syntax:
[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)
Description:
For an integral with an integrand that is a proper rational fraction, Ostrogradsky's decomposes the integral as
$\int \frac{P(x)}{Q(x)} \, dx = \frac{P_1(x)}{Q_1(x)} + \int \frac{P_2(x)}{Q_2(x)} \, dx. \tag*{} $
The inputs to ostrogradskysmethod are symbolic polynomials P and Q, with P being lesser degree than Q. The outputs are symbolic polynomials P_1, Q_1, P_2, and Q_2.
Examples:
Use Ostrogradsky's method to decompose an integral with P(x) = x^3-x^2+x+1 and Q(x) = (x^2+1)^3
syms x
P = x^3-x^2+x+1;
Q = (x^2+1)^3;
[P_1,Q_1,P_2,Q_2] = ostrogradskysmethod(P,Q,x)
P_1 =
x^3/4 - x^2/2 + (3*x)/4 - 1/2
Q_1 =
(x^2 + 1)^2
P_2 =
1/4
Q_2 =
x^2 + 1
Take the integral via Ostrogradsky's method and confirm that it matches MATLAB's solution
I = P_1/Q_1+int(P_2/Q_2)
I_c = int(P/Q)
I =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2
I_c =
atan(x)/4 + (x^3/4 - x^2/2 + (3*x)/4 - 1/2)/(x^2 + 1)^2
Citar como
Ryan Black (2024). Ostrogradsky's Method (https://www.mathworks.com/matlabcentral/fileexchange/87497-ostrogradsky-s-method), MATLAB Central File Exchange. Recuperado .
Compatibilidad con la versión de MATLAB
Compatibilidad con las plataformas
Windows macOS LinuxEtiquetas
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Descubra Live Editor
Cree scripts con código, salida y texto formateado en un documento ejecutable.