augmentedImageSource
(To be removed) Generate batches of augmented image data
augmentedImageSource
will be removed in
a future release. Create an augmented image datastore using the augmentedImageDatastore
function instead. For more information, see Version History.
Syntax
Description
creates an augmented image datastore, auimds
= augmentedImageSource(outputSize
,imds
)auimds
, for
classification problems using images from image datastore imds
,
with output image size outputSize
.
creates an augmented image datastore for classification and regression problems. The
array auimds
= augmentedImageSource(outputSize
,X
,Y
)X
contains the predictor variables and the array
Y
contains the categorical labels or numeric
responses.
creates an augmented image datastore for classification and regression problems. The
table, auimds
= augmentedImageSource(outputSize
,tbl
)tbl
, contains predictors and responses.
creates an augmented image datastore for classification and regression problems. The
table, auimds
= augmentedImageSource(outputSize
,tbl
,responseNames
)tbl
, contains predictors and responses. The
responseNames
argument specifies the response variable in
tbl
.
creates an augmented image datastore, using name-value pairs to configure the image
preprocessing done by the augmented image datastore. You can specify multiple
name-value pairs.auimds
= augmentedImageSource(___,Name,Value
)
Examples
Train Network with Rotational Invariance Using augmentedImageSource
Preprocess images using random rotation so that the trained
convolutional neural network has rotational invariance. This example uses the
augmentedImageSource
function to create an augmented
image datastore object. For an example of the recommended workflow that uses the
augmentedImageDatastore
function to create an augmented
image datastore object, see Train Network with Augmented Images.
Load the sample data, which consists of synthetic images of handwritten numbers.
[XTrain,YTrain] = digitTrain4DArrayData;
digitTrain4DArrayData
loads the digit training set as
4-D array data. XTrain
is a 28-by-28-by-1-by-5000 array, where:
28 is the height and width of the images.
1 is the number of channels
5000 is the number of synthetic images of handwritten digits.
YTrain
is a categorical vector containing the labels
for each observation.
Create an image augmenter that rotates images during training. This image augmenter rotates each image by a random angle.
imageAugmenter = imageDataAugmenter('RandRotation',[-180 180])
imageAugmenter = imageDataAugmenter with properties: FillValue: 0 RandXReflection: 0 RandYReflection: 0 RandRotation: [-180 180] RandScale: [1 1] RandXScale: [1 1] RandYScale: [1 1] RandXShear: [0 0] RandYShear: [0 0] RandXTranslation: [0 0] RandYTranslation: [0 0]
Use the augmentedImageSource
function to create an
augmented image datastore. Specify the size of augmented images, the
training data, and the image
augmenter.
imageSize = [28 28 1];
auimds = augmentedImageSource(imageSize,XTrain,YTrain,'DataAugmentation',imageAugmenter)
auimds = augmentedImageDatastore with properties: NumObservations: 5000 MiniBatchSize: 128 DataAugmentation: [1x1 imageDataAugmenter] ColorPreprocessing: 'none' OutputSize: [28 28] OutputSizeMode: 'resize' DispatchInBackground: 0
Specify the convolutional neural network architecture.
layers = [ imageInputLayer([28 28 1]) convolution2dLayer(3,16,'Padding',1) batchNormalizationLayer reluLayer maxPooling2dLayer(2,'Stride',2) convolution2dLayer(3,32,'Padding',1) batchNormalizationLayer reluLayer maxPooling2dLayer(2,'Stride',2) convolution2dLayer(3,64,'Padding',1) batchNormalizationLayer reluLayer fullyConnectedLayer(10) softmaxLayer classificationLayer];
Set the training options for stochastic gradient descent with momentum.
opts = trainingOptions('sgdm', ... 'MaxEpochs',10, ... 'Shuffle','every-epoch', ... 'InitialLearnRate',1e-3);
Train the network.
net = trainNetwork(auimds,layers,opts);
Training on single CPU. Initializing image normalization. |========================================================================================| | Epoch | Iteration | Time Elapsed | Mini-batch | Mini-batch | Base Learning | | | | (hh:mm:ss) | Accuracy | Loss | Rate | |========================================================================================| | 1 | 1 | 00:00:01 | 7.81% | 2.4151 | 0.0010 | | 2 | 50 | 00:00:23 | 52.34% | 1.4930 | 0.0010 | | 3 | 100 | 00:00:44 | 74.22% | 1.0148 | 0.0010 | | 4 | 150 | 00:01:05 | 78.13% | 0.8153 | 0.0010 | | 6 | 200 | 00:01:26 | 76.56% | 0.6903 | 0.0010 | | 7 | 250 | 00:01:45 | 87.50% | 0.4891 | 0.0010 | | 8 | 300 | 00:02:06 | 87.50% | 0.4874 | 0.0010 | | 9 | 350 | 00:02:30 | 87.50% | 0.4866 | 0.0010 | | 10 | 390 | 00:02:46 | 89.06% | 0.4021 | 0.0010 | |========================================================================================|
Input Arguments
outputSize
— Size of output images
vector of two positive integers
Size of output images, specified as a vector of two positive integers. The
first element specifies the number of rows in the output images, and the
second element specifies the number of columns. This value sets the
OutputSize
property of the returned augmented
image datastore, auimds
.
imds
— Image datastore
ImageDatastore
object
Image datastore, specified as an ImageDatastore
object.
X
— Images
4-D numeric array
Images, specified as a 4-D numeric array. The first three dimensions are the height, width, and channels, and the last dimension indexes the individual images.
Data Types: single
| double
| uint8
| int8
| uint16
| int16
| uint32
| int32
Y
— Responses for classification or regression
array of categorical responses | numeric matrix | 4-D numeric array
Responses for classification or regression, specified as one of the following:
For a classification problem,
Y
is a categorical vector containing the image labels.For a regression problem,
Y
can be an:n-by-r numeric matrix. n is the number of observations and r is the number of responses.
h-by-w-by-c-by-n numeric array. h-by-w-by-c is the size of a single response and n is the number of observations.
Responses must not contain NaN
s.
Data Types: categorical
| double
tbl
— Input data
table
Input data, specified as a table. tbl
must contain
the predictors in the first column as either absolute or relative image
paths or images. The type and location of the responses depend on the
problem:
For a classification problem, the response must be a categorical variable containing labels for the images. If the name of the response variable is not specified in the call to
augmentedImageSource
, the responses must be in the second column. If the responses are in a different column oftbl
, then you must specify the response variable name using theresponseNames
argument.For a regression problem, the responses must be numerical values in the column or columns after the first column. The responses can be either in multiple columns as scalars or in a single column as numeric vectors or cell arrays containing numeric 3-D arrays. When you do not specify the name of the response variable or variables,
augmentedImageSource
accepts the remaining columns oftbl
as the response variables. You can specify the response variable names using theresponseNames
argument.
Responses must not contain NaN
values. If there are
NaN
s in the predictor data, they are propagated
through the training, however, in most cases the training fails to
converge.
Data Types: table
responseNames
— Names of response variables in the input table
character vector | cell array of character vectors | string array
Names of the response variables in the input table, specified as one of the following:
For classification or regression tasks with a single response,
responseNames
must be a character vector or string scalar containing the response variable in the input table.For regression tasks with multiple responses,
responseNames
must be string array or cell array of character vectors containing the response variables in the input table.
Data Types: char
| cell
| string
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN
, where Name
is
the argument name and Value
is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name
in quotes.
Example: augmentedImageSource([28,28],myTable,'OutputSizeMode','centercrop')
creates an augmented image datastore that sets the OutputSizeMode
property to crop images from the center.
ColorPreprocessing
— Preprocessing color operations
'none'
(default) | 'gray2rgb'
| 'rgb2gray'
Preprocessing operations performed on color channels of input images,
specified as the comma-separated pair consisting of
'ColorPreprocessing'
and
'none'
, 'gray2rgb'
, or
'rgb2gray'
. This argument sets the ColorPreprocessing
property of the returned
augmented image datastore, auimds
. The
ColorPreprocessing
property ensures that all
output images from the augmented image datastore have the number of
color channels required by inputImageLayer
.
DataAugmentation
— Preprocessing applied to input images
'none'
(default) | imageDataAugmenter
object
Preprocessing applied to input images, specified as the
comma-separated pair consisting of 'DataAugmentation'
and an imageDataAugmenter
object or 'none'
.
This argument sets the DataAugmentation
property of the returned
augmented image datastore, auimds
. When
DataAugmentation
is 'none'
,
no preprocessing is applied to input images.
OutputSizeMode
— Method used to resize output images
'resize'
(default) | 'centercrop'
| 'randcrop'
Method used to resize output images, specified as the comma-separated
pair consisting of 'OutputSizeMode'
and one of the
following. This argument sets the OutputSizeMode
property of the returned
augmented image datastore, auimds
.
'resize'
— Scale the image to fit the output size. For more information, seeimresize
.'centercrop'
— Take a crop from the center of the training image. The crop has the same size as the output size.'randcrop'
— Take a random crop from the training image. The random crop has the same size as the output size.
Data Types: char
| string
BackgroundExecution
— Perform augmentation in parallel
false
(default) | true
Perform augmentation in parallel, specified as the comma-separated
pair consisting of 'BackgroundExecution'
and
false
or true
. This argument
sets the DispatchInBackground
property of the returned
augmented image datastore, auimds
. If
'BackgroundExecution'
is
true
, and you have Parallel Computing Toolbox™ software installed, then the augmented image datastore
auimds
performs image augmentation in
parallel.
Output Arguments
auimds
— Augmented image datastore
augmentedImageDatastore
object
Augmented image datastore, returned as an augmentedImageDatastore
object.
Version History
Introduced in R2017bR2018a: augmentedImageSource
object is removed
In R2017b, you could create an augmentedImageSource
object to
preprocess images for training deep learning networks. Starting in R2018a, the
augmentedImageSource
object has been removed. Use an augmentedImageDatastore
object instead.
An augmentedImageDatastore
has additional properties and
methods to assist with data preprocessing. Unlike
augmentedImageSource
, which could be used for training only,
you can use an augmentedImageDatastore
for both training and
prediction.
To create an augmentedImageDatastore
object, you can use either
the augmentedImageDatastore
function (recommended) or the
augmentedImageSource
function.
R2018a: augmentedImageSource
function will be removed
The augmentedImageSource
function will be removed in a future
release. Create an augmentedImageDatastore
using the augmentedImageDatastore
function instead.
To update your code, change instances of the function name
augmentedImageSource
to
augmentedImageDatastore
. You do not need to change the input
arguments.
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: United States.
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)