Contenido principal

Modelos ARX no lineales

Comportamiento no lineal modelado utilizando redes dinámicas como redes sigmoides y wavelet

Utilice modelos ARX no lineales para representar no linealidades en el sistema utilizando estimadores de no linealidad dinámicos como redes wavelet, partición en árbol y redes sigmoides. Para estimar modelos ARX no lineales, utilice la app System Identification o la función nlarx.

Apps

System IdentificationIdentificar modelos de sistemas dinámicos a partir de datos medidos.

Funciones

expandir todo

idnlarxNonlinear ARX model
nlarxEstimate parameters of nonlinear ARX model
nlarxOptionsOption set for nlarx
isnlarxDetect nonlinearity in estimation data
initSet or randomize initial parameter values
getpvecObtain model parameters and associated uncertainty data
setpvecModify values of model parameters
linearRegressorSpecify linear regressor for nonlinear ARX model (Desde R2021a)
polynomialRegressorSpecify polynomial regressor for nonlinear ARX model (Desde R2021a)
periodicRegressorSpecify periodic regressor for nonlinear ARX model (Desde R2022a)
customRegressorSpecify custom regressor for nonlinear ARX model (Desde R2021a)
getregRegressor expressions and numerical values in nonlinear ARX model
polyreg(Not recommended) Powers and products of standard regressors
customreg(Not recommended) Custom regressor for nonlinear ARX models
addreg(Not recommended) Add custom regressors to nonlinear ARX model
idWaveletNetworkWavelet network function for nonlinear ARX and Hammerstein-Wiener models
idSigmoidNetworkSigmoid network function for nonlinear ARX and Hammerstein-Wiener models
idTreePartitionTree-partitioned nonlinear function for nonlinear ARX models
idCustomNetworkCustom network function for nonlinear ARX and Hammerstein-Wiener models
idLinearLinear mapping object for nonlinear ARX models
idGaussianProcessGaussian process regression mapping function for nonlinear ARX and Hammerstein-Wiener models (requires Statistics and Machine Learning Toolbox) (Desde R2021b)
idTreeEnsembleDecision tree ensemble mapping function for nonlinear ARX models (requires Statistics and Machine Learning Toolbox) (Desde R2021b)
idSupportVectorMachineSupport vector machine regression mapping function for nonlinear ARX models (requires Statistics and Machine Learning Toolbox) (Desde R2022a)
idNeuralNetworkMultilayer neural network mapping function for nonlinear ARX models and Hammerstein-Wiener models (requires Statistics and Machine Learning Toolbox or Deep Learning Toolbox) (Desde R2023b)
idFeedforwardNetwork(Not recommended) Multilayer feedforward neural network mapping function for nonlinear ARX models (requires Deep Learning Toolbox)
evaluateEvaluate output values of idnlarx or idnlhw mapping object array for given set of input values
simSimulate response of identified model
simOptionsOption set for sim
predictPredecir la salida del modelo identificado con K pasos de anticipación
predictOptionsOption set for predict
compareCompare identified model output with measured output
compareOptionsOption set for compare
forecastForecast time-series values into future
forecastOptionsOption set for forecast
nlarxPlotPlot nonlinearity of nonlinear ARX model (Desde R2023a)
evaluateEvaluate output values of idnlarx or idnlhw mapping object array for given set of input values
getDelayInfoGet input/output delay information for idnlarx model structure
idnlarx/findopCompute operating point for Nonlinear ARX model
findopOptionsOption set for findop
idnlarx/operspecConstruct operating point specification object for idnlarx model
idnlarx/linearizeLinearize nonlinear ARX model
linappLinear approximation of nonlinear ARX and Hammerstein-Wiener models for given input

Bloques

expandir todo

Nonlinear ARX ModelSimulate nonlinear ARX model in Simulink software
Iddata SinkExportar los datos de simulación como objeto iddata al área de trabajo de MATLAB
Iddata SourceImport time-domain data stored in iddata object in MATLAB workspace

Temas

Ejemplos destacados