modelCalibrationPlot
Syntax
Description
modelCalibrationPlot(___,
specifies options using one or more name-value arguments in addition to the input
arguments in the previous syntax. You can use the Name=Value)ModelLevel
name-value argument to compute metrics using the underlying model's transformed
scale.
specifies options using one or more name-value arguments in addition to the input
arguments in the previous syntax and returns the figure handle
h = modelCalibrationPlot(ax,___,Name=Value)h.
Examples
This example shows how to use fitEADModel to create a Tobit model and then use modelCalibrationPlot to generate a scatter plot for predicted and observed EADs.
Load EAD Data
Load the EAD data.
load EADData.mat
head(EADData) UtilizationRate Age Marriage Limit Drawn EAD
_______________ ___ ___________ __________ __________ __________
0.24359 25 not married 44776 10907 44740
0.96946 44 not married 2.1405e+05 2.0751e+05 40678
0 40 married 1.6581e+05 0 1.6567e+05
0.53242 38 not married 1.7375e+05 92506 1593.5
0.2583 30 not married 26258 6782.5 54.175
0.17039 54 married 1.7357e+05 29575 576.69
0.18586 27 not married 19590 3641 998.49
0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05
rng('default'); NumObs = height(EADData); c = cvpartition(NumObs,'HoldOut',0.4); TrainingInd = training(c); TestInd = test(c);
Select Model Type
Select a model type for Tobit or Regression.
ModelType =
"Tobit";Select Conversion Measure
Select a conversion measure for the EAD response values.
ConversionMeasure =
"CCF";Create Tobit EAD Model
Use fitEADModel to create a Tobit model using the TrainingInd data.
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel); Tobit with properties:
CensoringSide: "right"
LeftLimit: NaN
RightLimit: 1
ModelID: "Tobit"
Description: ""
UnderlyingModel: [1×1 risk.internal.credit.TobitModel]
PredictorVars: ["UtilizationRate" "Age" "Marriage"]
ResponseVar: "EAD"
LimitVar: "Limit"
DrawnVar: "Drawn"
ConversionMeasure: "ccf"
Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Tobit regression model, right-censored:
EAD_ccf = min(Y*,1)
Y* ~ 1 + UtilizationRate + Age + Marriage
Estimated coefficients:
Estimate SE tStat pValue
__________ _________ ________ ________
(Intercept) 0.51548 0.052146 9.8854 0
UtilizationRate -1.6341 0.082162 -19.889 0
Age -0.0052326 0.0021215 -2.4664 0.013711
Marriage_not married -0.009952 0.030767 -0.32346 0.74637
(Sigma) 1.5088 0.022005 68.565 0
Number of observations: 2627
Number of left-censored observations: 0
Number of uncensored observations: 2626
Number of right-censored observations: 1
Log-likelihood: -6312.43
Predict EAD
EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead"); predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");
Validate EAD Model
For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.
Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel ="ead"; [DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel); modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.
YData =
"Observed";
[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)CalMeasure1=1×4 table
RSquared RMSE Correlation SampleMeanError
________ _____ ___________ _______________
Tobit 0.33435 47517 0.57823 7847.6
CalData1=1751×3 table
Observed Predicted_Tobit Residuals_Tobit
__________ _______________ _______________
44740 2543.1 42197
54.175 1233.4 -1179.2
987.39 11026 -10038
9606.4 9665.9 -59.421
83.809 1846.5 -1762.7
73538 70901 2637.8
96.949 735.56 -638.62
873.21 371.35 501.87
328.35 949.34 -620.99
55237 21413 33825
30359 28987 1371.7
39211 26429 12782
2.0885e+05 38813 1.7004e+05
1921.7 10917 -8995.5
15230 1238.4 13992
20063 5999.2 14064
⋮
modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

This example shows how to use fitEADModel to create a Beta model and then use modelCalibrationPlot to generate a scatter plot for predicted and observed EADs.
Load EAD Data
Load the EAD data.
load EADData.mat
head(EADData) UtilizationRate Age Marriage Limit Drawn EAD
_______________ ___ ___________ __________ __________ __________
0.24359 25 not married 44776 10907 44740
0.96946 44 not married 2.1405e+05 2.0751e+05 40678
0 40 married 1.6581e+05 0 1.6567e+05
0.53242 38 not married 1.7375e+05 92506 1593.5
0.2583 30 not married 26258 6782.5 54.175
0.17039 54 married 1.7357e+05 29575 576.69
0.18586 27 not married 19590 3641 998.49
0.85372 42 not married 2.0712e+05 1.7682e+05 1.6454e+05
rng('default'); NumObs = height(EADData); c = cvpartition(NumObs,'HoldOut',0.4); TrainingInd = training(c); TestInd = test(c);
Select Model Type
Select a model type for Beta.
ModelType =
"Beta";Select Conversion Measure
Select a conversion measure for the EAD response values.
ConversionMeasure =
"LCF";Create Beta EAD Model
Use fitEADModel to create a Beta model using the TrainingInd data.
eadModel = fitEADModel(EADData(TrainingInd,:),ModelType,PredictorVars={'UtilizationRate','Age','Marriage'}, ...
ConversionMeasure=ConversionMeasure,DrawnVar="Drawn",LimitVar="Limit",ResponseVar="EAD");
disp(eadModel); Beta with properties:
BoundaryTolerance: 1.0000e-07
ModelID: "Beta"
Description: ""
UnderlyingModel: [1×1 risk.internal.credit.BetaModel]
PredictorVars: ["UtilizationRate" "Age" "Marriage"]
ResponseVar: "EAD"
LimitVar: "Limit"
DrawnVar: "Drawn"
ConversionMeasure: "lcf"
Display the underlying model. The underlying model's response variable is the transformation of the EAD response data. Use the 'LimitVar' and 'DrawnVar' name-value arguments to modify the transformation.
disp(eadModel.UnderlyingModel);
Beta regression model:
logit(EAD_lcf) ~ 1_mu + UtilizationRate_mu + Age_mu + Marriage_mu
log(EAD_lcf) ~ 1_phi + UtilizationRate_phi + Age_phi + Marriage_phi
Estimated coefficients:
Estimate SE tStat pValue
_________ _________ ________ __________
(Intercept)_mu -0.65566 0.11484 -5.7093 1.2614e-08
UtilizationRate_mu 1.7014 0.078094 21.787 0
Age_mu -0.00559 0.0027603 -2.0252 0.042952
Marriage_not married_mu -0.012576 0.052098 -0.2414 0.80926
(Intercept)_phi -0.50132 0.094625 -5.2979 1.2685e-07
UtilizationRate_phi 0.39731 0.066707 5.956 2.9304e-09
Age_phi -0.001167 0.0023161 -0.50386 0.61441
Marriage_not married_phi -0.013275 0.042627 -0.31143 0.7555
Number of observations: 2627
Log-likelihood: -3140.21
Predict EAD
EAD prediction operates on the underlying compact statistical model and then transforms the predicted values back to the EAD scale. You can specify the predict function with different options for the 'ModelLevel' name-value argument.
predictedEAD = predict(eadModel,EADData(TestInd,:),ModelLevel="ead"); predictedConversion = predict(eadModel,EADData(TestInd,:),ModelLevel="ConversionMeasure");
Validate EAD Model
For model validation, use modelDiscrimination, modelDiscriminationPlot, modelCalibration, and modelCalibrationPlot.
Use modelDiscrimination and then modelDiscriminationPlot to plot the ROC curve.
ModelLevel ="ead"; [DiscMeasure1,DiscData1] = modelDiscrimination(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel); modelDiscriminationPlot(eadModel,EADData(TestInd, :),ModelLevel=ModelLevel,SegmentBy="Marriage");

Use modelCalibration and then modelCalibrationPlot to show a scatter plot of the predictions.
YData =
"Observed";
[CalMeasure1,CalData1] = modelCalibration(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel)CalMeasure1=1×4 table
RSquared RMSE Correlation SampleMeanError
________ _____ ___________ _______________
Beta 0.38655 43817 0.62173 -7393.4
CalData1=1751×3 table
Observed Predicted_Beta Residuals_Beta
__________ ______________ ______________
44740 18039 26701
54.175 10560 -10506
987.39 15551 -14564
9606.4 8407.7 1198.8
83.809 33318 -33234
73538 52120 21418
96.949 6598.1 -6501.2
873.21 5471.1 -4597.9
328.35 7335 -7006.6
55237 32580 22658
30359 21563 8796.4
39211 33177 6033.6
2.0885e+05 1.2586e+05 82987
1921.7 23319 -21397
15230 6565.9 8664
20063 11075 8987.5
⋮
modelCalibrationPlot(eadModel,EADData(TestInd,:),ModelLevel=ModelLevel,YData=YData);

Input Arguments
Exposure at default model, specified as a previously created Regression,
Tobit, or Beta object using
fitEADModel.
Data Types: object
Data, specified as a
NumRows-by-NumCols table with
predictor and response values. The variable names and data types must be
consistent with the underlying model.
Data Types: table
(Optional) Valid axis object, specified as an ax object
that is created using axes. The plot will be
created in the axes specified by the optional ax argument
instead of in the current axes (gca). The optional argument
ax must precede any of the input argument
combinations.
Data Types: object
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Example: modelCalibrationPlot(eadModel,data(TestInd,:),DataID=Testing,XData='residuals',YData='residuals')
Data set identifier, specified DataID and a
character vector or string. The DataID is included in
the output for reporting purposes.
Data Types: char | string
Model level, specified as ModelLevel and a
character vector or string.
Note
Regression models support all three model levels,
but a Tobit
or Beta
model supports model levels only for "ead"
and "conversionMeasure".
Data Types: char | string
Identifier for the reference model, specified as
ReferenceID and a character vector or string.
ReferenceID is used in the scatter plot output
for reporting purposes.
Data Types: char | string
Data to plot on x-axis, specified as
XData and a character vector or string for one of
the following:
'predicted'— Plot the predicted EAD values in the x-axis.'observed'— Plot the observed EAD values in the x-axis.'residuals'— Plot the residuals in the x-axis.VariableName — Use the name of the variable in the
datainput, not necessarily a model variable, to plot in the x-axis.
Data Types: char | string
Data to plot on y-axis, specified as
YData and a character vector or string for one of
the following:
'predicted'— Plot the predicted EAD values in the y-axis.'observed'— Plot the observed EAD values in the y-axis.'residuals'— Plot the residuals in the y-axis.
Data Types: char | string
Output Arguments
Figure handle for the scatter and line objects, returned as handle object.
More About
The modelCalibrationPlot function returns a
scatter plot of observed vs. predicted loss given default (EAD) data with a linear
fit and reports the R-square of the linear fit.
The XData name-value pair argument allows you to change the
x values on the plot. By default, predicted EAD values are
plotted in the x-axis, but predicted EAD values, residuals, or
any variable in the data input, not necessarily a model
variable, can be used as x values. If the selected
XData is a categorical variable, a swarm chart is used. For
more information, see swarmchart.
The YData name-value pair argument allows users to change the
y values on the plot. By default, observed EAD values are
plotted in the y-axis, but predicted EAD values or residuals can
also be used as y values. YData does not
support table variables.
The linear fit and reported R-squared value always correspond to the linear regression model with the plotted y values as response and the plotted x values as the only predictor.
References
[1] Baesens, Bart, Daniel Roesch, and Harald Scheule. Credit Risk Analytics: Measurement Techniques, Applications, and Examples in SAS. Wiley, 2016.
[2] Bellini, Tiziano. IFRS 9 and CECL Credit Risk Modelling and Validation: A Practical Guide with Examples Worked in R and SAS. San Diego, CA: Elsevier, 2019.
[3] Brown, Iain. Developing Credit Risk Models Using SAS Enterprise Miner and SAS/STAT: Theory and Applications. SAS Institute, 2014.
[4] Roesch, Daniel and Harald Scheule. Deep Credit Risk. Independently published, 2020.
Version History
Introduced in R2023a
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Seleccione un país/idioma
Seleccione un país/idioma para obtener contenido traducido, si está disponible, y ver eventos y ofertas de productos y servicios locales. Según su ubicación geográfica, recomendamos que seleccione: .
También puede seleccionar uno de estos países/idiomas:
Cómo obtener el mejor rendimiento
Seleccione China (en idioma chino o inglés) para obtener el mejor rendimiento. Los sitios web de otros países no están optimizados para ser accedidos desde su ubicación geográfica.
América
- América Latina (Español)
- Canada (English)
- United States (English)
Europa
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)

