cos
Symbolic cosine function
Syntax
Description
cos( returns the cosine function of
X)X.
Examples
Cosine Function for Numeric and Symbolic Arguments
Depending on its arguments, cos returns
floating-point or exact symbolic results.
Compute the cosine function for these numbers. Because these numbers are not symbolic
objects, cos returns floating-point results.
A = cos([-2, -pi, pi/6, 5*pi/7, 11])
A = -0.4161 -1.0000 0.8660 -0.6235 0.0044
Compute the cosine function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, cos returns unresolved symbolic
calls.
symA = cos(sym([-2, -pi, pi/6, 5*pi/7, 11]))
symA = [ cos(2), -1, 3^(1/2)/2, -cos((2*pi)/7), cos(11)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -0.41614683654714238699756822950076,... -1.0,... 0.86602540378443864676372317075294,... -0.62348980185873353052500488400424,... 0.0044256979880507857483550247239416]
Plot Cosine Function
Plot the cosine function on the interval from to .
syms x fplot(cos(x),[-4*pi 4*pi]) grid on

Handle Expressions Containing Cosine Function
Many functions, such as diff,
int, taylor, and
rewrite, can handle expressions containing
cos.
Find the first and second derivatives of the cosine function:
syms x diff(cos(x), x) diff(cos(x), x, x)
ans = -sin(x) ans = -cos(x)
Find the indefinite integral of the cosine function:
int(cos(x), x)
ans = sin(x)
Find the Taylor series expansion of cos(x):
taylor(cos(x), x)
ans = x^4/24 - x^2/2 + 1
Rewrite the cosine function in terms of the exponential function:
rewrite(cos(x), 'exp')
ans = exp(-x*1i)/2 + exp(x*1i)/2
Evaluate Units with cos Function
cos numerically evaluates these units
automatically: radian, degree,
arcmin, arcsec, and
revolution.
Show this behavior by finding the cosine of x degrees and
2 radians.
u = symunit; syms x f = [x*u.degree 2*u.radian]; cosinf = cos(f)
cosinf = [ cos((pi*x)/180), cos(2)]
You can calculate cosinf by substituting for
x using subs and then using
double or vpa.
