csc
Symbolic cosecant function
Syntax
Description
csc( returns the cosecant function of
X)X.
Examples
Cosecant Function for Numeric and Symbolic Arguments
Depending on its arguments, csc returns
floating-point or exact symbolic results.
Compute the cosecant function for these numbers. Because these numbers are not
symbolic objects, csc returns floating-point results.
A = csc([-2, -pi/2, pi/6, 5*pi/7, 11])
A = -1.0998 -1.0000 2.0000 1.2790 -1.0000
Compute the cosecant function for the numbers converted to symbolic objects. For many
symbolic (exact) numbers, csc returns unresolved symbolic
calls.
symA = csc(sym([-2, -pi/2, pi/6, 5*pi/7, 11]))
symA = [ -1/sin(2), -1, 2, 1/sin((2*pi)/7), 1/sin(11)]
Use vpa to approximate symbolic results with floating-point
numbers:
vpa(symA)
ans = [ -1.0997501702946164667566973970263,... -1.0,... 2.0,... 1.2790480076899326057478506072714,... -1.0000097935452091313874644503551]
Plot Cosecant Function
Plot the cosecant function on the interval from to .
syms x fplot(csc(x),[-4*pi 4*pi]) grid on

Handle Expressions Containing Cosecant Function
Many functions, such as diff,
int, taylor, and
rewrite, can handle expressions containing
csc.
Find the first and second derivatives of the cosecant function:
syms x diff(csc(x), x) diff(csc(x), x, x)
ans = -cos(x)/sin(x)^2 ans = 1/sin(x) + (2*cos(x)^2)/sin(x)^3
Find the indefinite integral of the cosecant function:
int(csc(x), x)
ans = log(tan(x/2))
Find the Taylor series expansion of csc(x) around x =
pi/2:
taylor(csc(x), x, pi/2)
ans = (x - pi/2)^2/2 + (5*(x - pi/2)^4)/24 + 1
Rewrite the cosecant function in terms of the exponential function:
rewrite(csc(x), 'exp')
ans = 1/((exp(-x*1i)*1i)/2 - (exp(x*1i)*1i)/2)
Evaluate Units with csc Function
csc numerically evaluates these units
automatically: radian, degree,
arcmin, arcsec, and
revolution.
Show this behavior by finding the cosecant of x degrees and
2 radians.
u = symunit; syms x f = [x*u.degree 2*u.radian]; cosecf = csc(f)
cosecf = [ 1/sin((pi*x)/180), 1/sin(2)]
You can calculate cosecf by substituting for
x using subs and then using
double or vpa.
