In the first part of the code, plot the approximation of π as a function of N, the number of terms in the series, for N between 1 and 15. The function to be used is (pi^2-8)/16=Summation(n=1:N)(1/((2n-1)^2*(2n+1)^2))
11 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
I basically do not have any idea how to start. any help would be appreciated.
1 comentario
Walter Roberson
el 26 de Oct. de 2013
How would you calculate the approximation of Pi if N is 1? How would you calculate it if N is 2? How would you plot the approximations?
Respuestas (1)
Jie
el 26 de Oct. de 2013
Editada: Jie
el 26 de Oct. de 2013
wish this could help.
% the formula could be rewrote as pi=sqrt(sum(16/((2*n-1)^2*(2*n+1)^2)+8)
N=[1:15, 20, 30];
my_pi=[];
for n=N
x=1:n;
tmp=sqrt(sum(16./((2*x-1).^2.*(2*x+1).^2))+8);
my_pi=[my_pi, tmp];
end
figure;h=axes('color',[.5,.5,.9],'fontangle','italic','fontname','Times New Roman','xcolor',[0,0,.7]);hold on; grid on,
plot(N,my_pi)
title('approcimation of \pi')
2 comentarios
Walter Roberson
el 26 de Oct. de 2013
Jie, please do not give complete solutions to homework assignments.
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!