How do I remove background noise from a sound wave?
46 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
David Koenig
el 17 de Nov. de 2013
Respondida: pravin m
el 5 de Nov. de 2019
I have a sound wave y(1:441000) gathered using a microphone and I have background n(1:441000) also gathered by the microphone. I have tried removing the background noise using a script something like:
Y=fft(y);
N=fft(n);
Yclean=Y-N;
yClean=ifft(Yclean);
However, yClean is not correct and is backwards in time. Do you have any suggestions?
Thanks,
Dave
0 comentarios
Respuesta aceptada
Pedro Villena
el 18 de Nov. de 2013
Create and Implement LMS Adaptive Filter to remove the filtered noise from desired signal
mtlb_noisy = y;
noise = n;
% Define Adaptive Filter Parameters
filterLength = 32;
weights = zeros(1,filterLength);
step_size = 0.004;
% Initialize Filter's Operational inputs
output = zeros(1,length(mtlb_noisy));
err = zeros(1,length(mtlb_noisy));
input = zeros(1,filterLength);
% For Loop to run through the data and filter out noise
for n = 1: length(mtlb_noisy),
%Get input vector to filter
for k= 1:filterLength
if ((n-k)>0)
input(k) = noise(n-k+1);
end
end
output(n) = weights * input'; %Output of Adaptive Filter
err(n) = mtlb_noisy(n) - output(n); %Error Computation
weights = weights + step_size * err(n) * input; %Weights Updating
end
yClean = err;
1 comentario
Tahira Batool
el 30 de Abr. de 2017
And what if one does not have a separate noisy signal to be removed from an original signal ,then how can we remove background noise from a signal?
Más respuestas (3)
Umair Nadeem
el 18 de Nov. de 2013
It would be easier if you could upload the noisy signal too. Save the variable y which supposedly has the noisy signal in a .mat file using save command and attach it with your post. Some frequency analysis could be done if the signal is available.
Also try to provide info about the signal frequency (if known), and the sampling frequency which you used to sample the data.
0 comentarios
pinreddy chaitanya
el 22 de Oct. de 2018
Editada: Walter Roberson
el 22 de Oct. de 2018
weights = weights + step_size * err(n) * input; %Weights Updating
what is the use of this line
1 comentario
pravin m
el 5 de Nov. de 2019
mtlb_noisy = y;
noise = n;
% Define Adaptive Filter Parameters
filterLength = 32;
weights = zeros(1,filterLength);
step_size = 0.004;
% Initialize Filter's Operational inputs
output = zeros(1,length(mtlb_noisy));
err = zeros(1,length(mtlb_noisy));
input = zeros(1,filterLength);
% For Loop to run through the data and filter out noise
for n = 1: length(mtlb_noisy),
%Get input vector to filter
for k= 1:filterLength
if ((n-k)>0)
input(k) = noise(n-k+1);
end
end
output(n) = weights * input'; %Output of Adaptive Filter
err(n) = mtlb_noisy(n) - output(n); %Error Computation
weights = weights + step_size * err(n) * input; %Weights Updating
end
yClean = err;
0 comentarios
Ver también
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!