Linear Regression and Curve Fitting
3 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Sam
el 4 de Dic. de 2013
Comentada: Wayne King
el 4 de Dic. de 2013
I have a model and some data I'd like to fit to it: X_t = B1*cos(2*pi*omega*t) + B2*sin(2*pi*omega*t) + eta_t
What function would I use to conduct linear regression here, to find B1 and B2?
0 comentarios
Respuesta aceptada
Wayne King
el 4 de Dic. de 2013
Editada: Wayne King
el 4 de Dic. de 2013
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
y = 1.5*cos(2*pi*100*t)+0.5*sin(2*pi*100*t)+randn(size(t));
y = y(:);
X = ones(length(y),3);
X(:,2) = cos(2*pi*100*t)';
X(:,3) = sin(2*pi*100*t)';
beta = X\y;
beta(1) is the estimate of the constant term, beta(2) the estimate of B1 and beta(3) the estimate of B2.
If you set the random number generator to its default for reproducible results:
rng default
Fs = 1000;
t = 0:1/Fs:1-1/Fs;
y = 1.5*cos(2*pi*100*t)+0.5*sin(2*pi*100*t)+randn(size(t));
y = y(:);
X = ones(length(y),3);
X(:,2) = cos(2*pi*100*t)';
X(:,3) = sin(2*pi*100*t)';
beta = X\y;
The results are:
beta =
-0.0326
1.5284
0.4643
pretty good.
2 comentarios
Wayne King
el 4 de Dic. de 2013
Yes, that's correct. Make sure you flip it to a column vector if it isn't already. Obviously you have to change the frequencies in the design matrix to suit your problem.
If you are trying to estimate other frequencies you need to add two columns to the design matrix per frequency --- one for cosine and one for sine
Más respuestas (1)
Jos (10584)
el 4 de Dic. de 2013
You might be interested in the function REGRESS
X = [cos(2*pi*omega*t(:)) sin(2*pi*omega*t(:))]
B = regress(Y,X)
If you want to specify an offset B(3), add a column of ones to X
X(:,3) = 1
0 comentarios
Ver también
Categorías
Más información sobre Linear and Nonlinear Regression en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!