Plot confusion doesn't work
5 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Hello,
I have the problem that when I try use plotconfusion, this function doesn't work.
I have dataset with 15 classes and I try to predict the target value using knn-classification. I've divided datasets to training and test datasets (75:25 accordinaly). My dataset has 300 instances and 90 attributes.
The problem is that when I try to call this plotconfusion function I just see that this doesn't work (it somehow just go to a infinite cycle or something like this, the process doesn't terminate). Could you tell me what's the problem or do I use it wrong?
Here the part of my code: knn = ClassificationKNN.fit(XtrainNN,YtrainNN,'NumNeighbors',5); Y_knn = knn.predict(XtestNN); loss(knn, XtestNN, YtestNN) plotconfusion(Y_knn,YtestNN)
3 comentarios
Baran Yildiz
el 26 de Sept. de 2017
I am also having the same problem. Plot confusion doesn't seem to work even for the sample problem/dataset given in the reference link below:
https://au.mathworks.com/help/nnet/ref/plotconfusion.html#inputarg_targets
Tapan
el 11 de Ag. de 2023
My error is please tell me how to solve
Error using plotconfusion>standard_args (line 255) Value is not a matrix or cell array.
Error in plotconfusion (line 111) update_args = standard_args(args{:});
Error in dltt (line 18) plotconfusion(testdata.Labels, Predicted);
Respuestas (3)
Nathan DeJong
el 27 de Sept. de 2017
Try transposing the inputs so that they are row vectors rather than column vectors. It worked for me. Seems to be a strange bug in plotconfusion().
1 comentario
Hamid Salimi
el 9 de Jun. de 2021
I write it for anyone that may have the same problem, I solved it by converting my actual and predicted results to categorical data! your actual and predicted should be n * 1, and then use it:
plotconfusion(categorical(actual),categorical(predicted));
0 comentarios
Ilya
el 17 de Dic. de 2013
I never used plotconfusion, but you can get what you want using functions confusionmat and imagesc. For example,
knn = ClassificationKNN.fit(XtrainNN,YtrainNN,'NumNeighbors',5);
Y_knn = knn.predict(XtestNN);
cm = confusionmat(YtestNN,Y_knn);
imagesc(cm);
colorbar;
0 comentarios
Ver también
Categorías
Más información sobre 2-D and 3-D Plots en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!