Is there any concept like dictionary or hash tables in matlab like in Python?
67 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Aditya
el 22 de En. de 2014
Comentada: Walter Roberson
el 5 de Sept. de 2024
help me with this.
1 comentario
Sinan Islam
el 16 de Dic. de 2022
Matlab introduced dictionary in R2022b
https://www.mathworks.com/help/matlab/dictionary.html
Respuesta aceptada
Mike Croucher
el 15 de Sept. de 2022
As of R2022b, MATLAB has a new dictionary datatype An introduction to dictionaries (associative arrays) in MATLAB » The MATLAB Blog - MATLAB & Simulink (mathworks.com)
3 comentarios
Bill Tubbs
el 4 de Sept. de 2024
Do the new dictionaries allow any type of hashable object as a key or only certain types, e.g. string, int, float?
Bill Tubbs
el 4 de Sept. de 2024
Just realised you already answered that question in this comment on the blog post.
Más respuestas (4)
Lateef Adewale Kareem
el 13 de Feb. de 2017
Editada: Walter Roberson
el 13 de Feb. de 2017
Yes.
c = containers.Map
c('foo') = 1
c(' not a var name ') = 2
keys(c)
values(c)
0 comentarios
Amit
el 22 de En. de 2014
There is container.map http://www.mathworks.com/help/matlab/ref/containers.mapclass.html which is similar to dictionary in python.
1 comentario
Bill Tubbs
el 27 de Jun. de 2020
This page no longer exists. Here are some current pages:
Vikram Raghu
el 4 de Abr. de 2019
6 comentarios
Walter Roberson
el 14 de Oct. de 2022
time_struct_dict_table();
I added support for timing table() accesses. This is for the case where each table variable contains a single scalar -- not the best use of table() but it is interesting to compare performance.
table() is enough slower that I cannot execute here on Answers as it exceeds the time limit. The results on my desktop are:
no operation: mean = 0.00007099, med = 0.00006009, std = 0.00003329
1000 random: mean = 0.00122110, med = 0.00123992, std = 0.00010826
first field: mean = 0.00024605, med = 0.00022060, std = 0.00006604
middle field: mean = 0.00035495, med = 0.00033114, std = 0.00015423
last field: mean = 0.00027000, med = 0.00024307, std = 0.00008898
fixed dynamic: mean = 0.00143618, med = 0.00148110, std = 0.00027858
s2 no operation: mean = 0.00011520, med = 0.00011546, std = 0.00000465
s2 1000 random: mean = 0.00146808, med = 0.00140250, std = 0.00024633
s2 first field: mean = 0.00023687, med = 0.00021517, std = 0.00005892
s2 middle field: mean = 0.00012845, med = 0.00009055, std = 0.00005018
s2 last field: mean = 0.00012263, med = 0.00010719, std = 0.00004112
s2 fixed dynamic: mean = 0.00091966, med = 0.00091064, std = 0.00010529
dictionary no operation: mean = 0.00006795, med = 0.00005281, std = 0.00002384
dictionary 1000 random: mean = 0.00053217, med = 0.00052016, std = 0.00004246
dictionary first field: mean = 0.00046640, med = 0.00046126, std = 0.00002666
dictionary middle field: mean = 0.00044165, med = 0.00043643, std = 0.00001592
dictionary last field: mean = 0.00043974, med = 0.00043391, std = 0.00001467
dictionary fixed dynamic: mean = 0.00050596, med = 0.00048529, std = 0.00004669
dictionary2 no operation: mean = 0.00005400, med = 0.00005221, std = 0.00000597
dictionary2 1000 random: mean = 0.00045773, med = 0.00044854, std = 0.00002464
dictionary2 first field: mean = 0.00050153, med = 0.00049391, std = 0.00005518
dictionary2 middle field: mean = 0.00044765, med = 0.00043619, std = 0.00002839
dictionary2 last field: mean = 0.00046707, med = 0.00043328, std = 0.00007996
dictionary2 fixed dynamic: mean = 0.00045607, med = 0.00045069, std = 0.00002115
table no operation: mean = 0.00005341, med = 0.00005138, std = 0.00000502
table 1000 random: mean = 0.09879826, med = 0.09191914, std = 0.02014155
table first field: mean = 0.07515565, med = 0.06741315, std = 0.02106712
table middle field: mean = 0.08363042, med = 0.06921861, std = 0.03160464
table last field: mean = 0.06500776, med = 0.05959190, std = 0.01808197
table fixed dynamic: mean = 0.08840865, med = 0.09286350, std = 0.00894378
table2 no operation: mean = 0.00005393, med = 0.00005415, std = 0.00000115
table2 1000 random: mean = 0.03217866, med = 0.03195556, std = 0.00051499
table2 first field: mean = 0.01194878, med = 0.01183239, std = 0.00052255
table2 middle field: mean = 0.01216132, med = 0.01192055, std = 0.00058499
table2 last field: mean = 0.01306926, med = 0.01159898, std = 0.00409964
table2 fixed dynamic: mean = 0.03837043, med = 0.03305997, std = 0.01260309
Those table() results are pretty poor compared to struct or dictionary! 75 to 175 times slower !
Walter Roberson
el 5 de Sept. de 2024
It appears that in the meantime, speeds have pretty much doubled.
Unless, that is, I happened to execute the code before on my older iMac ?
R2024b Pre-release timing on my intel iMac:
no operation: mean = 0.00003648, med = 0.00003586, std = 0.00000213
1000 random: mean = 0.00053238, med = 0.00053929, std = 0.00001971
first field: mean = 0.00012308, med = 0.00012347, std = 0.00000589
middle field: mean = 0.00012308, med = 0.00012172, std = 0.00000508
last field: mean = 0.00012482, med = 0.00012419, std = 0.00000332
fixed dynamic: mean = 0.00043523, med = 0.00043637, std = 0.00000451
s2 no operation: mean = 0.00003281, med = 0.00003290, std = 0.00000043
s2 1000 random: mean = 0.00038221, med = 0.00038425, std = 0.00001155
s2 first field: mean = 0.00006217, med = 0.00006207, std = 0.00000052
s2 middle field: mean = 0.00005924, med = 0.00005918, std = 0.00000085
s2 last field: mean = 0.00005553, med = 0.00005549, std = 0.00000101
s2 fixed dynamic: mean = 0.00037049, med = 0.00036893, std = 0.00000855
dictionary no operation: mean = 0.00003666, med = 0.00003632, std = 0.00000189
dictionary 1000 random: mean = 0.00056722, med = 0.00055974, std = 0.00001518
dictionary first field: mean = 0.00052580, med = 0.00051858, std = 0.00001562
dictionary middle field: mean = 0.00052420, med = 0.00051482, std = 0.00001838
dictionary last field: mean = 0.00050794, med = 0.00050233, std = 0.00001180
dictionary fixed dynamic: mean = 0.00057878, med = 0.00057393, std = 0.00001463
dictionary2 no operation: mean = 0.00003649, med = 0.00003652, std = 0.00000030
dictionary2 1000 random: mean = 0.00051898, med = 0.00051190, std = 0.00001326
dictionary2 first field: mean = 0.00055092, med = 0.00053418, std = 0.00008305
dictionary2 middle field: mean = 0.00051139, med = 0.00051072, std = 0.00000163
dictionary2 last field: mean = 0.00052065, med = 0.00051705, std = 0.00001230
dictionary2 fixed dynamic: mean = 0.00052063, med = 0.00051347, std = 0.00001601
table no operation: mean = 0.00003769, med = 0.00003737, std = 0.00000212
table 1000 random: mean = 0.04622849, med = 0.04621893, std = 0.00149274
table first field: mean = 0.04062485, med = 0.04034006, std = 0.00122831
table middle field: mean = 0.04080905, med = 0.04076088, std = 0.00183228
table last field: mean = 0.03929389, med = 0.03886761, std = 0.00162468
table fixed dynamic: mean = 0.04706765, med = 0.04702064, std = 0.00166777
table2 no operation: mean = 0.00003161, med = 0.00003153, std = 0.00000066
table2 1000 random: mean = 0.00463795, med = 0.00463153, std = 0.00006766
table2 first field: mean = 0.00166517, med = 0.00165833, std = 0.00002508
table2 middle field: mean = 0.00161921, med = 0.00162277, std = 0.00003672
table2 last field: mean = 0.00167462, med = 0.00167515, std = 0.00002166
table2 fixed dynamic: mean = 0.00462260, med = 0.00460212, std = 0.00009719
Bill Tubbs
el 17 de Abr. de 2020
Editada: Bill Tubbs
el 17 de Abr. de 2020
struct seems to produce a much nicer text output than container.Map:
% Example with struct
settings = struct();
settings.open_loop = false;
settings.adaptive = true;
settings.estimator = 'RLSFF';
if settings.open_loop
do something...
end
>> disp(settings)
open_loop: 0
adaptive: 1
estimator: 'RLSFF'
>> settings
settings =
struct with fields:
open_loop: 0
adaptive: 1
estimator: 'RLSFF'
% Example with Map
settings2 = containers.Map;
settings2('open_loop') = false;
settings2('adaptive') = true;
settings2('estimator') = 'RLSFF';
if settings2('open_loop')
do something...
end
>> settings2
settings2 =
Map with properties:
Count: 3
KeyType: char
ValueType: any
>> disp(settings)
open_loop: 0
adaptive: 1
estimator: 'RLSFF'
Although they look identical when returning at the command line.
But is there a literal representation for a struct? So you can define it in code more concisely, something like this:
settings = struct(
'open_loop': false,
'adaptive': true,
'estimator': 'RLSFF'
);
(The above is not valid of course). Or is there some other way of doing this in a readable convenient way?
1 comentario
Bill Tubbs
el 20 de Abr. de 2020
Your example doesn't work. Unfortunately, you need to add the line continuation syntax:
settings = struct(...
'open_loop', false, ...
'adaptive', true, ...
'estimator', 'RLSFF' ...
);
Ver también
Categorías
Más información sobre Dictionaries en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!