Why is the predicted_label +1 even though it should be +1? Using LIBSVM
1 visualización (últimos 30 días)
Mostrar comentarios más antiguos
I extracted the principal components of training and testing data. 'trainingdata.train' has feature values from both +1(face 1) and -1(all other faces) labels. 'testdata.train' has feature values from face 2 and no label since i want the SVM to predict its label. The "predicted_label" given by LIBSVM is +1 even though it should be -1.
[training_label_matrix, training_instance_matrix] = libsvmread('trainingdata.train');
[testing_label_matrix, testing_instance_matrix] = libsvmread('testdata.train');
model = svmtrain(training_label_matrix, training_instance_matrix);
[predicted_label] = svmpredict(testing_label_matrix, testing_instance_matrix, model);
Please point me out to what i am doing wrong.
1 comentario
Walter Roberson
el 27 de En. de 2014
svm is not going to do a good job on data that is not well separated or when not enough examples have been supplied to determine where the separation should be.
Respuestas (0)
Ver también
Categorías
Más información sobre Dimensionality Reduction and Feature Extraction en Help Center y File Exchange.
Productos
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!