Maximisation of a box cut on 4 sides

1 visualización (últimos 30 días)
Jerin James
Jerin James el 3 de Jun. de 2014
Respondida: Sean de Wolski el 3 de Jun. de 2014
A piece of rectangular paper (20 × 30cm) is supplied to make a box of the largest possible volume, by cutting out the corners and folding up the sides. The cuts must be square (ie both sides are reduced by the same amount). How big should the cuts be to maximise the volume of the box?
Using the information above, we have the equation
V = (20 2x)(30 2x)(x)
a) Use Matlab to find the volume of the box with a range of values of x from 0 to 10 in steps of 0.001. [You may need to use the element-wise multiplication, “.*”, in your formula]

Respuestas (1)

Sean de Wolski
Sean de Wolski el 3 de Jun. de 2014
Something like:
V = @(x)-(20 - 2*x)*(30 - 2*x)*x
x = fminunc(V,0)

Categorías

Más información sobre Logical en Help Center y File Exchange.

Etiquetas

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by