Why do I get the error “Dimensions of arrays being concatenated are not consistent.”?
1.630 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Misrak Seifu
el 4 de Jun. de 2014
Comentada: Pranav
el 30 de Jun. de 2024
Can anybody help me why my code show me this error when i run it? i have attached my code.
19 comentarios
Pranav
el 30 de Jun. de 2024
the matlab community is horrible.
this message is brought to you by python gang.
Respuesta aceptada
Roger Wohlwend
el 4 de Jun. de 2014
Editada: MathWorks Support Team
el 27 de Nov. de 2018
This error is encountered when you try to vertically concatenate arrays that do not have compatible sizes. For example, to vertically concatenate two matrices A and B, they must have the same number of columns:
A = ones(2,3)
B = ones(5,3)
C = [A; B]
C is a matrix with 7 rows and 3 columns.
However, if B has 4 columns instead of 3, you will get the error. For example,
B = ones(5,4)
C = [A; B]
For more information on concatenation in general, see https://www.mathworks.com/help/matlab/math/creating-and-concatenating-matrices.html.
3 comentarios
Más respuestas (2)
Ivan Dwi Putra
el 27 de Nov. de 2019
I have the same error too
this is my code
close all
% Initial Conditions
% x0 = [3; % 3 radians
% 0]; % 0 rad/s
%Parameter Massa
m1 = 650; % massa train set 1 dalam kg
m2 = 650; % massa train set 2 dalam kg
%Parameter Gaya
f1 = 1170; % dalam N
f2 = 1170; % dalam N
t = [0:100:1000];
% System Dynamics
% a = f1./m1 - (0.004 + (0.00032.*(1.5-(0.015.*sin(0.2.*t)-50))));
% b = f2./m2 - (0.0025 + (0.0004.*(1.6-(0.01.*sin(0.3.*t)-50))));
A = [0 1 0 0
0 f1./m1 - (0.004 + (0.00032.*(1.5-(0.015.*sin(0.2.*t)-50)))) 0 0
0 0 0 1
0 0 0 f2./m2 - (0.0025 + (0.0004.*(1.6-(0.01.*sin(0.3.*t)-50))))];
B = [0;
1/m1
0
1/m2];
C = [1 1 1 1];
D = 0;
% Control Law
Q = [1 0 0 0;
0 1 0 0
0 0 1 0
0 0 0 1];
R = [1 0 0 0;
0 1 0 0
0 0 1 0
0 0 0 1];
K = lqr(A,B,Q,R);
% Closed loop system
sys = ss((A - B*K), B, C, D);
0 comentarios
kevin harianto
el 8 de Abr. de 2022
I am wondering if there is a way to dynamically adjust this as my error is also error using horzcat, dimensions of the arrays are not consistent: at Location = [Location, ptCloud.Location];
outputFolder = fullfile(tempdir,"Pandaset");
preTrainedMATFile = fullfile(outputFolder,"trainedSqueezeSegV2PandasetNet.mat");
preTrainedZipFile = fullfile(outputFolder,"trainedSqueezeSegV2PandasetNet.zip");
if ~exist(preTrainedMATFile,"file")
if ~exist(preTrainedZipFile,"file")
disp("Downloading pretrained model (5 MB)...");
component = "lidar";
filename = "data/trainedSqueezeSegV2PandasetNet.zip";
preTrainedZipFile = matlab.internal.examples.downloadSupportFile(component,filename);
end
unzip(preTrainedZipFile,outputFolder);
end
% Load the pretrained network.
outputFolder = fullfile(tempdir,"Pandaset");
load(fullfile(outputFolder,"trainedSqueezeSegV2PandasetNet.mat"),"net");
% Read the point cloud.
%Next we shall change the outputfolder to face towards the data_2
outputFolderNew=fullfile("data_2");
ptCloud = pcread(fullfile(outputFolderNew,"0000000000.pcd"));
%Due to the ptCloud being a different data type
%With the above information in mind (trying to reach 64 in height)
% In order to match with the Expected file format we shall append additional matrices of 0
% in order to subsitute for the lack of clear resolution.
%These additional values should allow the raw pcd file matric to meet the
%resolutions demand
% Since we are only trying to influence the resolution
% (pandaSet Ideal resolution being 64x1856x3)
% and not the actual
% value's representation we will only be adding in the values.
Location = zeros(64, 1856, 3);
%next we shall add in the ptCloud.Location values
Location = [Location, ptCloud.Location];
%Now that we have added in the additional resolution we
% shall now create a new ptCloud variable for replacement.
tempPtCloud = ptCloud;
%next we shall change the Location properties.
tempPtCloud.Location = Location;
%Then we shall utilize the new ptCloud and treat it as the original
ptCloud = tempPtCloud;
% Convert the point cloud to 5-channel image.
im = helperPointCloudToImage(ptCloud);
% Predict the segmentation result.
predictedResult = semanticseg(im,net);
% Display sematic segmentation result on point cloud
% This should now be displaying our pointClouds that we want to add in and
% analyze for our use case.
helperDisplayLabelOverlaidPointCloud(im,predictedResult);
view([39.2 90.0 60])
title("Semantic Segmentation Result on Point Cloud")
0 comentarios
Ver también
Categorías
Más información sobre Graphics Object Properties en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!