Constrained linear least squares

2 visualizaciones (últimos 30 días)
Hui
Hui el 1 de Jul. de 2014
Editada: Star Strider el 1 de Jul. de 2014
Hi everyone! I have a set of data such as:
y=[0.007696733 0.004758526 0.00547575 0.009628829 0.009749457 0.009073008 0.009647521 0.009795106 0.014071997 0.014208544 0.01758061 0.015072178 0.018425671 0.019217437 0.020314108 0.018246917 0.022694743 0.041827743 0.040799924 0.033812901 0.043516698];
y(t)=y(2:n);
y(t-1)=y(1:n-1);
I want to figure out the two parameters [b,c] of: y(t)=(1+b)*y(t-1)-b/c*(y(t-1))^2
What's more the two parameters need to be over 0;
Thank you so much for reading my question!

Respuestas (1)

Star Strider
Star Strider el 1 de Jul. de 2014
Editada: Star Strider el 1 de Jul. de 2014
It is actually nonlinear, because it is nonlinear in the parameters (the partial derivatives of the function with respect to each parameter are functions of themselves or of other parameters).
Using lsqcurvefit (Optimization Toolbox), the code is:
n = length(y);
yd = y(2:n);
yi = y(1:n-1);
f = @(B,y) (1 + B(1)).*y - (B(1)./B(2)).*y.^2; % Objective function
yp = linspace(min(yi), max(yi)); % Plot vector for ‘yi’
bc = lsqcurvefit(f, rand(2,1)*100, yi, yd, [1; 1]*eps, [Inf; Inf])
figure(1)
plot(yd, yi, 'xb')
hold on
plot(yp, f(bc,yp), '-r')
hold off
grid
The fit produces:
b = 2.989459285195542E-01
c = 3.990401160101856E-02
b/c = 7.491625942488537E+00

Categorías

Más información sobre Systems of Nonlinear Equations en Help Center y File Exchange.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by