How can I differentiate without decreasing the length of a vector?
61 visualizaciones (últimos 30 días)
Mostrar comentarios más antiguos
Javad
el 18 de Jul. de 2014
Comentada: John D'Errico
el 10 de Mzo. de 2020
I have some vectors and want to differentiate them up to second order. I don't want to use "diff" because it reduces the length of vector in higher orders! Is there any other function or method that I differentiate and keep the length of vector constant?
0 comentarios
Respuesta aceptada
Jan
el 18 de Jul. de 2014
gradient is smarter for calculating derivatives:
x = rand(1, 100);
d2 = gradient(gradient(x));
The Savtizky Golay smoothing filter can be applied to calculate a smoothed derivative by fitting polynmials to local parts of the signal. Look in the FileExchange for many different submissions:
1 comentario
John D'Errico
el 10 de Mzo. de 2020
Jan is correct, of course. I might only add one idea, to fit the data using a smoothing spline, then differentiate the spline, and evaluate the derivative spline at the original data points.
spl = csaps(x,y);
spld = fnder(spl);
yprimepred = fnval(spld,x);
As I've done it here, this uses tools from the curve fitting toolbox, though there are alternative ways to implement it too.
Más respuestas (1)
Daniel kiracofe
el 18 de Jul. de 2014
My standard approach is to use 2nd order centered difference for the main part of the vector, and use first order forward and backward difference at the boundaries:
function d = cdiff(x, dt)
if (nargin<2)
dt =1 ;
end
d(1) = (x(2) - x(1)) / dt;
d(length(x)) = ( x(end) - x(end-1) ) / dt;
ndx = 2:(length(x)-1);
d(ndx) = (x( ndx+1) - x(ndx-1)) / (2 * dt);
1 comentario
Ver también
Categorías
Más información sobre Smoothing en Help Center y File Exchange.
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!