leave one person out cross validation

8 visualizaciones (últimos 30 días)
pallavi patil
pallavi patil el 19 de Ag. de 2021
Respondida: Prince Kumar el 7 de Sept. de 2021
i have dataset which contains data from 10 subject. My idea fir cross validaytion is leave one person out cross validation. Here i trian on data from 9 subjects and test on data from 1. When we normally do cross validation, we have a stopping criteria which avoids model overfitting.
How do I avoid overfittiing in my case.
below is code snippet
for idx = 1:N%k = LOOCV train on rest; validate on K- meal
s = [1:idx-1 idx+1:N];
Xtrain= Training(s); %(all remaining datasets)
Xvalidate = Training(idx);% idx dataset
Xtrainlabel = Training_labels(s);
Xvalidatelabel = Training_labels(idx);
Mdl = fitcsvm(XTrain(:,featsel),...
XTrainlabel);
[trainSVM,trainScoreSVM] = resubPredict(Mdl); %training
%- Cross-validate the classifier
CVSVMModel = crossval( Mdl );
%validation
Yval_pred= predict(Mdl, XValidate(:, featsel)); %validation
[cmV,order] = confusionmat(Yval_pred, actual_val);
tnV = cmV(1,1);
fnV = cmV(1,2);
fpV = cmV(2,1);
tpV = cmV(2,2);
Accuracy(idx) = (tp+fp)./(tp+fp+tn+fn);
end
  2 comentarios
Wan Ji
Wan Ji el 20 de Ag. de 2021
Use dropoutLayer may help you avoid model overfitting. Try it
pallavi patil
pallavi patil el 20 de Ag. de 2021
i am using svm as classifier. I supoose dropoutLayer works for neural network.

Iniciar sesión para comentar.

Respuestas (1)

Prince Kumar
Prince Kumar el 7 de Sept. de 2021
You can try the following methods:
  1. Remove features
  2. Feature Selection
  3. Regularization
  4. Ensemble models if you are ok with trying models other than SVM

Productos


Versión

R2020b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by