How can I use the Lasso to apply to Logistic Regression?
    14 visualizaciones (últimos 30 días)
  
       Mostrar comentarios más antiguos
    
    Cheng-Yu Hsieh
 el 29 de Ag. de 2021
  
    
    
    
    
    Respondida: Kumar Pallav
    
 el 2 de Sept. de 2021
            I am trying to apply supervised binary classification problem with the help of lasso to prevent overfitting. But I am stuck at how to apply lasso to logistic classification function, and how to predict the response values.
Below is the code, where:
- grpTrain_Lasso: a vector of values 1's & 2's, representing 2 categories.
- grpTrain_Lasso_categorical: containing 2 categories: "Cancer", "Normal".
- grpTrain: Original categorical vector, containing the diagnosis of each patient. ("Cancer", "Normal")
- obsSmall: 195x100, where columns are # of patients records, rows are # of features variables.
Lasso Embedded Model Training
[grpTrain_Lasso grpTrain_Lasso_categorical] = grp2idx(grpTrain)
lModel = lasso(obsSmall, grpTrain_Lasso, "CV", 20) 
% column: predictor
% row: lambda value for each parameter (for the predictor)
Respuesta aceptada
Más respuestas (0)
Ver también
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


